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FOREWORD

Realizing the need for a publication to encourage further
scientific approach to the solution of many traffic problems, the
Eno Foundation is pleased to present this methodical discussion
of some statistical theories and their application in the analysis
of traffic data.

The Foundation was fortunate in acquiring the services of
Dr. Bruce D. Greenshields, Professor and Executive Officer, Civil
Engineering Department, and Dr. Frank M. Weida, Executive
Officer, Department of Statistics,The George Washington Universi-
ty, as co-authors. By knowledge and experience they are eminently
qualified. They have been guided by a practical insight and have
shown an unusual and necessary discernment of the subject.

In some quarters, thinking on traffic as a national problem has
reached a degree of desperation. This is due partly to confusion.
It is hoped this study will provide some clarification by em-
phasizing the importance of an analytical basis for initiating
logical improvements. Such procedure should tend to create better
understanding and much-needed uniform basic methods.

Tt has been a privilege for the Eno Foundation to provide the
preparation and publication of this monograph. Publication has
resulted from considerable time and effort by both authors and
the Foundation Staff.

Tae Exo FOUNDATION

iii



PREFACE

The engineer, and particularly the traffic engineer working in a
comparatively new field, faces constantly the need for new, more
precise information. To obtain this information, he collects and
analyzes data. The theory and procedures to be followed in such
analyses have long been known to the statistician, but not always
to the engineer.

Mathematics he learns for his engineering is of the classical type—
algebra, trigonometry, calculus — in which exact answers are
obtained. In statistics no answer is exact for there is always a
range of variability within which the true answer lies. Variance,
the measure of this variability, may in some cases be so small
that the result for practical purposes may be considered exact.
But usually it is not. In traffic behavior, a phase of human behavior,
it is well to employ the ‘“mathematics of human welfare.”

Traffic research carried on at various times over a period of years
by one of the writers has served to confirm the fact that traffic
behavior tends to follow definite statistical patterns. The difficulty
of solving the problems encountered in analyzing the data collected
during that research pointed to the need for someone to gather
together and explain the statistical methods most pertinent to
traffic analyses.

In response to this need, this monograph is written. Desired in-
formation, it was felt, could be assembled, developed, and presented
most effectively, by a traffic engineer and a statistician working
together. The one would know the viewpoint of the engineer and
the limitation of his statistical training and vocabulary. The other
would provide that knowledge and skill in his own field that can
be obtained only after years of work and study.

The authors, despite the work involved, have enjoyed what seemed
to them a very worth while undertaking. This monograph is not
in any sense the last word on the subject. It is merely an intro-
duction, which they hope will assist the engineer in determining
the type and amount of data he needs to obtain sufficiently
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accurate answers to his problems and save him time and effort.
They trust that if it is a new tool to him it will be to his liking.

In the first four chapters the authors have attempted to explain
this mathematical tool, and in the last one they have attempted to
show how to use it.

The authors wish to thank the Eno Foundation and staff for its
kindly criticism, good counsel, encouragement and sponsorship.
They are indebted to Professor Herman Betz of the Department
of Mathematics at the University of Missouri for hig careful review
of the manuscript.

Washington D. C. Bruce D. GREENSHIELDS

1
June 1, 1952 Frank M. WEIDA
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CHAPTER I

THE NATURE AND UTILITY OF STATISTICS

1. 1. General Remarks. The rapid movement of traffic on our streets
and highways in ever changing patterns is one of the most familiar
and beneficial phenomena of our daily lives and at the same time one
of the most confusing and vexing. The annoyances and even danger
experienced in driving over congested streets and highways, the
lack of places to park and, in general, the inadequacies of our high-
way system are widely recognized. There is clearly a need for in-
creased knowledge of traffic behavior in order that traffic regula-
tion and planning may be made more scientific. The method by
which scientific knowledge is increased is to observe what happens
and then by inductive reasoning to establish general laws pertain-
ing to these happenings. It is the purpose of this book to develop
a scientific system known as Statistical Methods and show how to
use these methods for analyzing and solving traffic problems.

Mathematical probability, which is the basis of all statistical
theory, had its beginning in ancient times. Certain mathematical
patterns developed as pastimes by the Greeks and others were first
found to coincide with chance happenings such as occur in card
games and later found to coincide with actual happenings. It was
not until the Seventeenth Century that one of the first practical
uses was made of probability, when life expectancy tables were
published for use in computing life insurance premiums and bene-
fits. Among the early important contributors to the theory of pro-
bability we find the names of DeMoivre, La Place, Gauss, Pascal,
Fermat and Bernoulli.

The methods of statistics have long been employed by the
chemist, the sociologist, the physicist, the biologist, the bacteri-
ologist, the physiologist, the economist, the meteoroligist, the
business man, the psychologist, and many others. In the biological
sciences, the whole theory of evolution and heredity rests in reality
on a statistical basis. Likewise, the behavior of the body mechanism
itself lends itself to statistical analysis. Statistical theory is the

1



2 STATISTICS AND HIGHWAY TRAFFIC ANALYSIS

basis of various aspects of theoretical physics and chemistry as de-
monstrated by Gibbs, Bohr, Einstein, Fermi, Dirac and others. In
the social sciences, statistics is used in the measurement of the
sizes of the population, the birth, marriage, mortality and morbi-
dity rates, and in determining the distribution of the population by
trade or income, wages, prices, production, foreign trade, and
transportation. In manufacturing, statistics facilitates efficient
management, economic control of the quality of manufactured
products, and the evaluation of laws of behavior to determine
control or lack of control. Statistics is the basis of corrective legis-
lation. But in spite of this wide-spread use, it is only within the
last few years that the traffic engineer has come to realize that
statistics is his most useful tool'. The traffic engineer should fully
realize the importance of the statistical approach to the solution
of his problems. If there has been some failure on his part to do so,
it no doubt is due to its omission from his engineering training in
which he has been taught to assume that the values with which he
is dealing are exact and always the same. Each individual piece of
material of a given kind and size is assumed to behave the same as
any other piece of the same kind and size. Statistics deals with
measurements which at best are approximate values which are
usually not the same when repeated. In traffic engineering, the in-
dividuals are human and it can not be assumed that they will
always behave in precisely the same manner.

The automobile does not become a complete mechanism until
the driver is behind the wheel. It is the driver who sees the curve
ahead and turns the steering wheel accordingly, who sees the ob-
struction and applies the brakes. It is the emotional and physical
characteristics of the driver that must be measured and evaluated.
To this end, the traffic engineer must use the special type of mathe-
matics that applies to the problem he is considering.

In this attempt to make statistics more readily available to the
traffic engineer and others, an effort will be made not only to ex-
plain statistical methods, but to show by example how they may
be used in the solution of traffic problems. An understanding of the
calculus is desirable but not essential for use of the methods in-
volved. In using statistics it must be kept in mind that it is the
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handmaiden of reality and not reality itself. In all cases it must be
demonstrated that the statistical law of behavior to be used agrees
with actual behavior.

As the statistical methods are developed, it will be found that
they constitute a unified structure. This will become apparent as
the development is followed step by step. The first step will be to
explain statistical terms through the derivation and explanation of
the mathematical and statistical probability formulae which form
the basis of statistics. The use of these formulas will become clear
through their application to the solution of typical problems.

1.2. Definition and Nature of Statistics. Statistics is the funda-
mental and most important part of inductive logic. It is both an art
and a science, and it deals with the collection, the tabulation, the
analysis and interpretation of quantitative and qualitative mea-
surements. It is concerned with the classifying and determining of
actual attributes as well as the making of estimates and the testing
of various hypotheses by which probable, or expected, values are
obtained. It is one of the means of carrying on scientific research
in order to ascertain the laws of behavior of things — be they animate
or inanimate. Statistics is the technique of the Scientific Method.

1.3. Statistics and Mathematics. Statistics is a branch of applied
mathematics. It differs from so-called pure mathematicsin that the
values in statistics are approximations or estimates, but not mere
guesses. The rules and methods of operation are those of pure
mathematics for it is the tool of statistical analysis.

An “‘exact” value in pure mathematics may be thought of as
one of the possible values a variable may assume. There are but
two possibilities in pure mathematics, namely: the variable has a
certain value or it does not have that value. In the first case, the
probability is 1, meaning that it is certain that the variable has
that value, while in the second case the probability is zero, mean-
ing that it is certain that the variable does not have that value.

The variable in statistics, called stochastic variable or variate, is
much more general than the variable in pure mathematics. The
stochastic variable is one, to each of the many possible values of
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which, there is attached a probability, p, that it attains said value.
As will be shown in Chapter II1, this probability may have any
value between zero and one. This fact is expressed mathematically
as0 <p <1

The stochastic or random variable may be discrefe or continuous.
It is called discrete if it can take on only certain isolated values in
an interval and it is called continuous if it can take on any value
in an interval. It is to be noted that the probability that a con-
tinuous stochastic variable has a specific value is always zero.

I.4. Two General Types of Problems. Statistics deals with problems
that fall into two general categories.

1. The first of these categories of problems has to do with charac-
terizing a given set of numerical measurements or estimates of
some attribute or set of attributes applying to an individual or a
given group of individuals. This entails the finding of a mathe-
matical model that fits the pattern of the variation in measure-
ments or the variation in the things being measured. The engineer
is familiar with the fact that a distance may be measured several
times with a different result each time, and he knows that the
mathematical pattern called “The Principle of Least Squares” is used
in characterizing such measurements. In studying some attribute
such as the ability of students, it is found that there are just as
many brighter than “average” as there are less bright and this
pattern is called “normal” and there is a mathematical equation
for such a normal curve. Other laws of behavior (distributions) are
found to follow other mathematical patterns, such as Poisson’s
“random” curves (distributions), the Pearson system of distribu-
tion and others.

Fortunately, these mathematical patterns are all of the same
basic nature. It will be one of our tasks to describe and explain
this phase of statistical mathematics.

2. The second category of problems has to do with characterizing
an attribute or attributes belonging to all individuals of the group
one is investigating, such as all white pine lumber or all the people
living in Ponca City, all people with red hair, or all aluminum
alloys of a given specification. These well defined classes of items
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are called populations or “universes”. This second class of problems
involves the selection of random samples from the population, the
statistical study of these samples, and the drawing of inferences
from them. '

The problems just mentioned indicate that (1) the data must be
summarized as will be discussed in Chapter II; (2) they must be
thoroughly analyzed by obtaining mathematical patterns of the
laws of their behavior as will be discussed in Chapter III; and (3)
it must be possible to draw inferences from the samples in regard
to the reliability and significance of pertinent summary values
obtained from the samples for the purpose of characterizing the
“universe” as will be discussed in Chapter IV.

1.5. Types of Sampling. One may classify random sampling in two
ways: (1) Sampling by attributes; and (2) Sampling by variables,
either discrete or continuous. In sampling by attributes, one deter-
mines the number of times (the frequency) the event happened as
specified and the number of times the event did not happen as speci-
fied. In sampling by variables, we measure such things as the weight
or length of an object, the duration of an event or the intensity of a
force. We may also measure a group of individuals in order to
characterize them in regard to multiple categories such as weights,
heights, temperatures, etc., to be considered jointly. The basis of
all such characterizations is counting. Hence we must determine
the frequency of the occurrence of a characteristic or event among
n possible occurrences or non-occurrences or among 7 trials.

1. 6. The Variables to be Measured and Interpreted. The statistical or
scientific method applies not only to the analysis and interpreta-
tion of data but to the whole procedure of first recognizing the
need for increased knowledge about a particular problem; second,
the gathering of data about the problem; third, studying the signi-
ficance of the data; and finally, presenting the results of the in-
vestigation in a report. In carrying out this statistical procedure
there are certain precautions that must be observed.

The recognition of the need for more information about a parti-
cular problem usually comes from those who have to deal with it.
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A research project conducted in Ohio in 19394 will serve toillustrate
the steps in conducting an investigation to obtain certain specific
information. This study had to do with center-line markings of
roadways. The fact that different states had, and still have,
different systems of markings, causing confusion to motorists,
pointed to the obvious need of determining the best type.

The first question to be answered was: Is the problem solvable
by statistical methods ? If so, what method or methods are applic-
able, what variables need to be measured, how much data are
needed, and how best to obtain the needed data ?

In the problem of center-line marking, one is interested in the
qualities that make a good center-line marking. Some such
qualities are visibility, interpretability and durability. But what
about other things? Is a broken line just as satisfactory for a
center-line as a solid line ? The broken line is cheaper because it re-
quires less paint. What kind of a line or lines should be used to
mark a ““no-passing’ zone ? Such questions, of course, can only be
answered after the study is made. Hence it was necessary to make
a provisional conjecture as to what types of center-line marking
should be tested.

1.7. Means of Measuring the Variable, and Precautions to be taken.
Having decided provisionally on what types of center-lines to test,
the next step was to devise a means of measurement. Should it be
done by noting the behavior response pattern of drivers to different
types of markings ? Should a speed check be made ? Should drivers
be questioned ? Should some other methods be used ? What is the
probable cost and efficiency of the different possible methods ?
What type of equipment is necessary to make the recordings ?

It has been found by experience that it is sometimes necessary
to design and construct special equipment or apparatus to record
field data. It is recalled that in 19322 it was only after consider-
able thought that the rather simple expedient of time-motion
pictures was used to record the speed and spacing of vehicles. A
mechanical device, provided it is first checked for mechanical
defects, is always more reliable than human judgment. The picture
method possessed one other feature that is not often attained. It
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gave complete information on all that happened within the field of
view. The pertinent information could then be selected at leisure
and if a wrong conjecture was made, other information already in
hand could be studied.

Tt was decided in the 1939 project to take speed recordings with
the Eno-scope, a device using mirrors so arranged that the time at
which a vehicle passes two successive positions on the roadway
can be recorded by means of a stop watch. These positions must be
a considerable distance apart, usually 88 or 176 feet, so that the
human variation in snapping the watch will not cause an appreci-
able error. Another source of error that is not so readily apparent
is the inability of the observer to take a random sample without
taking the proper precautions to obtain one. It would seem that if
the observer simply recorded the speed of as many vehicles as
possible it would result in an unbiased sample, but such is not the
case. Vehicles tend to bunch into queues behind the slower drivers.
Depending upon the alertness of the observer, he may be un-
consciously selecting slow or fast vehicles. He must arbitrarily
select some convenient numbered vehicle such as every third one.

This device is not infallible. Suppose, for instance, that an
origin-destination survey is being conducted to determine the
travel routes of people living in different sections of a city, and
that it has been decided to interview every tenth house starting
from an arbitrary point. But would we be correct in assuming that
every tenth house constitutes a good random sample ? It could be
that every tenth house is a corner house and hence may be a shop
of some kind. In this case, some special procedure must be used,
such as writing the numbers on cards and after shuffling, picking
every tenth card.

1.8. The Size of the Sample. The size of the sample is the quantity of
data needed to meet certain considerations. One of the considera-
tions is cost, another is time. These depend upon the decision as to
(1) the maximum error that will be tolerated and (2) the degree of
certainty demanded that this allowable or maximum error will not
be exceeded. This definitely determines the size of the sample or the
amount of data to be collected. The method of gathering the data
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is largely dependent upon the structure and character of the
“universe” from which the sample is taken.

In the Ohio study of 1939, it was desired among other things to
get the opinions of drivers about center-lines. Did they prefer a
yellow line, a white one, a broken line, or a solid line ? The obvious
procedure was, of course, to stop each motorist and ask his opinion.
But how many ? Would the majority of 30 or 40 people agreeing on
one combination as being the best be sufficient ? At first one might
possibly say yes, but on second thought he would realize that all
opinions might not be unbiased. Perhaps the drivers from Pennsyl-
vania had grown accustomed to a certain combination and would
prefer that, or the drivers from Ohio might prefer a different
system. This possible tendency to biased opinions meant that a
larger sample should be taken and also that along with the opin-
ions, the residence of the driver should be ascertained.

Sometimes opinions are-unconsciously biased. This fact also was
brought out in the Ohio study. It was decided to try road signs
worded to warn drivers that they were entering a ‘“no-passing”
zone. It was doubted that a large percentage of the motorists
would see the signs, but surprisingly enough, over 98 percent of
them stated they had seen the signs. This was so unexpected that
it was questionable, and a way of checking these answers was sought.

The means of checking was revealed through consideration of
the purpose of the sign. Signs aside from those whose shape conveys
a message, must be read. A sign much larger than the “no-passing”
sign was prominently displayed to warn the drivers thatthey were
entering a ‘‘test-zone”. This might have been guessed from the
fact that they had seen 3 or 4 different types of marking within a
mile or so, but, over one-third when questioned said they did not
know they were in a ““test-zone”. The conclusion reached was that
at least one-third and probably more did not see the “no-passing”
signs in spite of the fact that 98 percent said they had.

L.9. The Validity and Reliability of Measurement. Itis not only opin-
ion measurements that must be checked for validity. In astudy of
brake-reaction-time made in Ohio in 19343, it was decided to de-
termine whether the facts warranted the assumption that those
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with quick reaction-time were safer drivers. It was perhaps per-
fectly logical to assume that a quick reaction will enable a driver
to avoid accidents, but the study showed no relationship of acci-
dents to brake-reaction-time. If this were true, and other investi-
gations have shown that it is, then we deduce that an individual
with a slow reaction-time employs a larger margin of safety and so
compensates for his shortcoming. In other words, brake-reaction-
time iz not a valid measurement to determine whether a driver is
a safe driver or not since it does not in fact measure what it was
supposed to measure.

A measurement is reliable if there is consistency in obtaining it.
In other words, consistency in measurements increases our con-
fidence in the reliability of the conclusion we wish to draw from
the set of measurements.

1.10. Cost of the Project. After the amount of data needed to obtain
results accurate to the degree desired has been estimated, the
apparatus needed has been decided and the procedure outlined, it
is possible to estimate the minimum cost. This cost will depend to
a large extent on the amount of personnel needed and the time re-
quired to complete the study. The cost of development research is
easier to estimate than that of basic or fundamental research. In
the former we know much more about the expected results. Deve-
lopment research follows the fundamental. It is often used to
verify results that have been suggested by more basic studies. In
any case, however, it is necessary to estimate the cost. The skill of
the researcher is rightly or wrongly measured by his ability to
estimate correctly this cost and effort required to carry on an in-
vestigation to the point where definite results, whether positive or
negative, are obtained and reported.

I.11. The Report. A preconceived idea or system of thinking must
not be allowed to influence the reporting of results. A negative
result is just as important as a positive one. Too often an investi-
gation is conducted to prove a point and this attempt to adhere
to an established opinion may have undue influence in selecting
the attribute to measure.
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The results of a scientific investigation should be presented with
the same care that was used in conducting the survey. All too often,
information is brought to light only to lose its value through poor
presentation. Knowledge is useful only as it becomes known. For-
tunately there has been developed a recognized style of engineering
reports and several good books on the subject are available.5 It
should be emphasized that the writing of the report should be con-
sidered a part of any scientific investigation, and a most important
part.

I.El 2. Purpose of the Book. Having indicated the general procedure,
and noted some of the precautions that need to be taken, we shall
now attempt to discuss the necessary theory and outline the techni-
ques for the solution of traffic problems. Finally we shall attempt the
solution or partial solution of some of the more typical problems.

Chapter 11 presents the method of summarizing data and ob-
taining summary numbers that are useful for the analysis, char-
acterization and interpretation of one or more sets of measure-
ments.

Chapter 111 presents the theory and basis of the various mathe-
matical patterns (laws of behavior) that are the underlying prin-
ciples upon which the analysis and interpretation of the results
depend.

Chapter IV shows the use of summary methods of Chapter II
and the basic theory of Chapter ITI to solve problems by statistical
methods and to ascertain the reliability, validity, significance, and
meaning of the solution.

Chapter V outlines the solution or partial solution of some
typical as well as some of the more unusual traffic problems.
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CHAPTER II

SUMMARIZING OF DATA

I1. 1. Objective. After the data have been collected, it is not only con-
venient but necessary that they be condensed in order to be
analyzed and interpreted by means of summary numbers which
serve tocharacterize the data. Some summary numbers are averages
and included among them are the mean, the median, the mode, and
the standard deviation.

This chapter shows how to summarize data both analytically
and graphically. The procedures will be made clear by examples.

11.2. Frequency Distribution. A frequency distribution constitutes
the first step in classifying and condensing data. Itis an arrangement
in which the data consisting of separate values or measurements
of a variable are combined into groups called classes covering a
limited range of values, such as 1 to 5 miles, 5 to 10 miles, etc. The
number of values in each class is called the class frequency. Once
the observations have been combined into groups, the individual
items lose their identity and the midpoint of the class group be-
comes a unit quantity with a broader meaning. This requires that
the grouping be done in such a way that it will accurately re-
present the items from which it is computed. The methods to be
followed will become clear with an examination of the construec-
tion of a frequency table.

I1. 3. Class Interval and Class Mark. A class interval sets boundaries
or limits to a class of a frequency distribution. In Table II. 1., the
lower bounds of the classes are 15, 20, ...; the upper bounds are
19, 24, 29, ...; the lower boundaries or limits are 14.5, 19.5 ...;
‘the upper limits or boundaries are 19.5, 24.5, . ... The class interval
is 5. By the laws of approximate numbers, the data have been
rounded off to the nearest whole number so that the speeds are
correct to the nearest mile per hour.

12



SUMMARIZING OF DATA 13

Table II.1

SPEED IN MILES PER HOUR OF FREE MOVING VEHICLES ON SEPTEMBER 16, 1939,
IN OAKLAWN, ILLINOIS ON U.S.H. 12 and 20 AT A POINT ONE MILE EAST OF
HARLEM AVENUE

(1) (2) (3) (4) (5) (6) (7)
Speed | Number |Smoothed | PerCent i . |Cumulative
in of Fre. of Relative |Cumulative Per Cont
m.p.h. | Vehicles | quency | Vehicles Freguency | Frequency Prequency
8 f fe 100 f/n f/in fe 100 fo/n
70-74 0 0 0 0
65—69 0 0.7 0 1]
60—64 2 5.7 0.67 0.0067 300 100.00
55-59 15 10.3 5.00 0.0500 298 99.33
50-54 14 19.3 4.67 0.0467 283 94.33
45-49 29 39.0 9.67 0.0967 269 89.67
40-44 74 54.3 24.67 0.2467 240 80.00
35-39 60 65.7 20.00 0.2000 166 55.33
30-34 63 50.7 21.00 0.2100 106 35.33
25-29 29 32.7 9.67 0.0967 43 14.33
2024 6 14.3 2.00 0.0200 14 4.67
15-19 8 4.7 2.67 0.0267 8 2.67
10-14 0 2.9 1] 0 0 .00
300 = n {300.1 =n| 100.02 1.0002

Data furnished by Public Roads Administration, Washington, D. C.

Note: This illustration is of a continuous stochastic variable which may take any value. An
illustration of a discontinuous variable is the numbers of vehicles that pass over a highway in
any time interval. There is no such thing as a part of a vehicle. An illustration of a discontinnous
stochastic variable where only even integers are possible is the distribution of rows of kernels on
ears of corn.

A class mark is the mid-value of the class interval. In Table I1.1.,
column (1), the class marks are 17, 22, 27, ....

The exact values of a discontinuous variable are usually taken
equal to the class marks. For many purposes, all the values of a
continuous variable that fall within a given class interval are
grouped at the class mark as a convenient approximation.

The number of values that the variable has within a certain class
interval is called a class frequency. In Table II. 1. the frequency
63 in column (2) corresponds to the class 30-34 in column (1).
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Two conditions which serve as a guide in the choice of the size of
a class interval are: (a) the desire to be able to treat all the values
assigned to any one class, without appreciable error, as if they
were equal to the mid-value or class mark of the class interval:
(b) for convenience and brevity, it is desirable to make the class
interval as large as possible, but always subject to the first con-
dition. These two conditions will in general be fulfilled if the inter-
val is so chosen that the number of classes lies between ten and
thirty. This does not mean, however, that the minimum may not
be less than ten classes nor the maximum more than thirty classes;
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it merely means that in most cases it is possible to form the classi-
fication with the number of intervals lying between ten and
thirty.

Another convenient means of classification is the graphical
summary method. There are five types of graphs that have been
found useful: namely, the Frequency Rectangles, the Histogram,
the Frequency Polygon, the Smoothed Frequency Polygon, and the
Frequency Curve. We shall now discuss these in the order named.
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1I. 4. Frequency Rectangles. Using the frequency distribution as given
by columns (1) and (2) in Table II. 1., the rectangles, shown in



16 STATISTICS AND HIGHWAY TRAFFIC ANALYSIS

Figure II. 1 may be drawn. The class intervals are the bases and
the altitudes (ordinates) are equal to the frequencies of the classes.

Unit area is defined as that of a rectangle whose base is a class
interval and whose altitude is a unit of frequency. This gives a
one to one correspondence between area and frequency. In other

f

Number of Vehicles

Speed in Miles Per Hour

Ficurs II. 3
FrEQUENCY PoLyGoN oF OBSERVED VEHICLE SPEEDS

words, since the base is equal to one (class interval), the height is
the frequency.

I1. 5. Histogram. A histogram is the system of upper bases of the fre-
quency rectangles. It is illustrated in Figure II. 2. for the fre-
quency distribution given by columns (1) and (2) of Table II. 1.
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I1. 6. Frequency Polygon. A frequency polygon is formed by selec-
ting a convenient horizontal scale for the variable being measured
and a vertical scale for the class frequency and then plotting the
points so that the class marks are the abscissas and the class fre-
quencies are the ordinates. This method is shown in Figure II. 3.
for the distribution given in Table II. 1.

IL. 7. Smoothed Frequency Polygon. The smoothed frequency polygon
is a means of graduation sometimes called a method of moving aver-
ages. It is useful in obtaining an approximation to the probable
frequency curve or theoretical law of behavior of the attribute
that is being measured.

One method of obtaining moving averages is illustrated in
Columns (1), (2), (3), in Table II. 1., in which the smoothed value
for an interval is obtained by summing the frequencies in that
interval and the two adjacent intervals and dividing by three.
Hence, the smoothed value for the interval 15-19 is equal to the
sum of the frequencies 0, 8, and 6, divided by 3. For the interval
20-24, we add the frequencies 8, 6, and 29, and divide the sum by
3. We proceed likewise for the remaining intervals. The smoothed
frequency polygon for the distribution given in columns (1) and
(3) of Table II. 1. is shown in Figure II. 4. By comparing Figure
II. 4 with Figure II. 3., it is seen that the smoothed frequency
polygon has removed the irregularities found in Figure II. 3. and
is closer, in appearance, to a frequency curve. See definition of
frequency curve, Article II. 8.

The number of classes over which an average is taken does not
need to be three. The decision as to the number of classes that
should be taken depends upon the total frequency, the total
number of classes in the distribution, the size of the class interval,
the equality or inequality of the classes, and the experimental
error, the discussion of which is beyond the scope of this book. The
process of smoothing tends to correct for sampling errors, grouping
errors, and experimental errors.

An important point to note is that the total area within the
rectangles, the histogram, the frequency polygon, the smoothed
frequency polygon and within the frequency curve is equal to the
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total frequency n. This total frequency in terms of probability is
thought of as one and in terms of per cent as 100 per cent. The
height of the frequency rectangles is then expressed as a fraction
or a per cent,
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II. 8. Frequency Curve. A smooth curve superimposed upon the fre-
quency polygon or smoothed frequency polygon so that the area
under it is equal to the total frequency is known as a frequency
curve. The frequency curve is an estimate of the limit that would be
approached by a frequency polygon or a smoothed frequency
polygon if we indefinitely decreased the size of the class intervals
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and at the same time indefinitely increased the frequency n. An
illustration of a frequency curve for the distribution given in
Table II.1. is given in Figure II. 5. where the points of the
smoothed frequency polygon have been used.
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I1. 9. Cumulative Frequencies. Another type of distribution can be se-
cured by the use of cumulative frequencies. These values are shown
m column (6), Table II. 1., and are obtained by successive adding
of the frequencies, beginning with the lowest interval. To illus-
trate: starting with 8, add 6 to 8 and get 14; then 29 + 14 which
equals 43, and so on until 298 plus 2 equals 300 for the last cumul-
ative frequency which, of course, is the total number of cases.
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The cumulative frequency distribution in the example given
shows how many vehicles had a speed below (or above) a given
speed. From columns (1) and (6) in Table II. 1., we find that
8 vehicles had a speed less than 19.5 miles per hour, 14 had a speed
less than 24.5 miles per hour; 43 had a speed less than 29.5 miles
per hour and so on. In some cases the cumulative frequencies ex-
pressed as per cents of the total frequencies are more meaningful.
These per cents are given in column (7), Table II. 1. According to
column (7), 2.67 per cent of the vehicles have a speed less than
19.5 miles per hour, 4.67 per cent of the vehicles have a speed less
than 24.5 miles per hour and so on.

To obtain the graph of the cumulative frequencies or the cumul-
ative per cent frequencies, the points are plotted with cumula-
tive values as ordinates and the upper limits of the corresponding
classes as abscissas.

The points then are connected with straight line segments
(polygon) or with & smooth curve. In either case the resulting
graph is called an ogive. The curve may be interpreted as portray-
ing a law of growth. If the cumulation is in the opposite direction,
we would obtain a law of negative growth. In the case given,
2 vehicles (0.67 per cent) have a speed greater than 59.5 miles per
hour; 17 vehicles (5.67 per cent) have a speed greater than 54.5
miles per hour and so on. The ogive for both the absolute and per-
centage scale is shown in Figure II. 6.

The class frequencies may also be expressed as per cents or
relative frequencies. These values are shown in columns (4) and (5)
of Table II. 1. In the former case, the total area has been made
100 units of area and in the latter case the total area has been
made the unit of area.

If Y =1 (X)) is the equation of the frequency curve, then

f Yax

is the number of observations having a value between X, and X,.

If A4 is the lower limit of possible values of the variable and B
is the upper limit, then the total area N, namely, the total fre-
quency is
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B .
f YdX =N.
A

In terms of relative frequency or statistical probability, we have
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where the whole area under the frequency curve is taken as the
unit of area.

In the latter case, Y is called the probability density and YdX
is called the probability element.

For the cumulative frequency distribution, in the theoretical
case in terms of probability, the expression

F (X) =£XYdX

is known as the Distribution Function of Probability where
F(A)=0and F(B)=1and A <X <B.

Frequency distributions are characterized by summary numbers
which often are those functions of the measurements known as ave-
rages. These averages show the location of central tendencies (if
any) and serve as bases for evaluating differences between values
(dispersion) as well as skewness and flatness of the distribution.
They are also instrumental in isolating extreme or unusual values.

I1.10. Average. An average is a function of the entire group of values
such that if all the values were equal to one another it would equal each
one of the group of equal values.

In general, the values or measurements are unequal, some being
larger and some being smaller than the average.

Of the many averages, those which are of most use and interest
to the statistician are first, the common averages including the
arithmetic mean, the median, the mode, the geometric mean, and the
karmonic mean; and second, the averages of differences including
the mean (average) deviation, the centra harmonic mean, the standard
deviation, and the moments.

I1.11. Arithmetic Mean. Graphically, the arithmetic mean is the
abscissa of the centroid of the total area under the frequency curve
or frequency polygon.

It is the point at which if the whole area is considered to be con-
centrated, the first moment of the total area will equal the sum of
the first moments of the components of area into which the total
area is divided.
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From Figure II. 7.,if f,, f,, . . . fx are component areas and if X,

X,, ... Xy are their corresponding distances from the Y-axis and
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ifn=1 +1f, +.... + £, is the total area and X is its distance
from the Y-axis, then

nX =X, +£,X, + ... +f Xk

whence

k
f1X1 +f2X2 + veee +kak=§ile1~

n n

X = II.11.1.
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Algebraically: The arithmetic mean is the sum of all the values

of the variable divided by the number of values. If X is the arith-
metic mean and X;, X,, ...., X, represent the values of the vari-
able X, then

n

_ =X
T Lt X 4. X . IL. 11. 2.
n n

To illustrate: Let the values of the variable X be 10,13, 17, and
18. The arithmetic mean of these values is

4
T XN +%+X%+%X, 35 10413417 4 18
1 4 4

=14.5

When certain values of the variable oceur more than once, the
same notation may be used, namely:

X X t+X +X + X +X, +X, 4. + X
n

II.11. 3.

But another symbolic representation is more convenient. Let f
be the frequency or number of times the variable X has the value
Xi. The sum of the values X is f; Xj. Let n be the sum of the f,
where, say, there are k different values of X and hence of the f;.
This symbolic representation gives

k k
}_i_zl:ifiXi _ zlli HXy II. 11. 4.

&
Zify 8
T :
HinIl. 11. 4, eachf, = 1and k — n, the expression for X is the
same as that given in II. 11. 2.
If the class intervals are unequal in size, the computational
process may be simplified by making a simple translation. Let
Xy =X;—X, II. 11. 5.
where X, may be any convenient value whatsoever. In practice it

is best to use for X, the midpoint of the middle class if there are an
odd number of classes, if there arc an even number of classes, use
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the midpoint of a class as near the middle of the distribution as
possible.

Substituting the value of X; as given in II. 11. 5. in equation
II. 11. 4., we have

k k k k
i 1 Xy % f; 1 + XO) 2 fi x'y X()Zi f;
1 — 1 — 1 + 1

n n n n

X =

k k
Since ¥;fj =n and 3, f;/n = 1;
1 1

k
2y x'y
X=X, + -+

n

II. 11. 6.

In the special case when all class intervals are equal, we may use
the linear transformation (translation and change of unit)

X —X,
X =— II.11. 7.
c
where ¢ is the size of the class interval.
Using the value of X; from II. 11. 7. in II, 11. 2.,
k
_ Zl‘ai fy (ex1 + Xo)
X =
n
k k
X(,Zi f1 C Zi f1 X3
1 1
= + .
n n
This when simplified becomes
k
— Aifixy
X=X,+ecl|t IL. 11. 8.
n

To illustrate IL. 11.8., we may use the frequency distribution
given in table II. 1.
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Table II. 2

SPEED IN MILES PER HOUR OF FREE MOVING VEHICLES ON SEPTEMBER 16,
1939, IN OAEKLAWN, ILLINOIS ON U.S.H. 12 and 20 AT A POINT ONE MILE
EAST OF HARLEM AVENUE

Speed in miles| Number of X —-X,= S —8,
per hour Vehicles 8 — 8, e
X =28 f s 8 fs
70-74 0 30 6 0
65—69 0 25 5 0
60—64 2 20 4 8
55—-59 15 15 3 45
50-54 14 10 2 28
45—49 29 5 1 29
40—44 74 0 0 0
35-39 60 -5 -1 —60
30-34 63 —10 -2 -126
25-29 29 -15 -3 —87
20—-24; 6 -20 —4 —24
15-19 8 -25 -5 -40
300 —-227

Substituting in II. 11. 8. the necessary values from Table 1I. 2.,
we find

k
P zi f1 Xy
X = Xo “4-c Xr
n
becomes
X =42 +5 (_ 227) I
= + 300 = 38.2. II.11.9.

This result is approximate in that in addition to its possessing a
sampling error and an experimental error, it possesses a grouping
error. These errors will be discussed later.

This arithmetic mean speed of 38.2 miles per hour is the estimate
of the probable or expected speed of a vehicle at the highway point
observed. What we wish to know about the mean speed is first,
whether or not it is reliable and second, the range of speeds above
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or below it. Is 38.2 miles per hour characteristic for all vehicles and
if s0, to what extent? We are able, with measures of dispersion,
to find the answers to these questions. After doing this, we must
look for a rational explanation of the agreement between the
statistically obtained values and the actual facts; we must also
determine what these facts mean. Were different types of vehicles
observed or was the variety of speeds due to drivers with different
desires or different abilities in driving, or to some other cause ?
This will be discussed and illustrated in Chapter IV.

I1.12. Measure of Central Tendency. A measure of central tendency
is sometimes thought of as a characterizing or descriptive value, a
norm or a typical value. It is always an average. But an average in
itself is not necessarily a measure of central tendency. For this to
be true, the average must agree fairly closely with all of the values
from which it is obtained.

I1. 13. Mathematical Expectation or Expected Value of a Variable.

The expected value of a particular value X; of the variable X is the

product of X; and the probability, p; that X takes the value X;. If
E (X}) denotes the expected value of X, then

E (Xi) = Pi X1 IT.13.1.

Since the expected value of a sum is the sum of the expected

values, it follows that the expected value E (X) of a variable X

which may assume a set of values Xy i =1,2, ..... , ) with cor-
responding probabilities p; (i =1, 2, ...., n)is
E(X) =31 pi X 1I. 13. 2.
1

I1.14. Deviation from Arithmetic Mean. An important character-
izing property of the arithmetic mean is that the algebraic sum of
the deviations of the values from the arithmetic mean is equal to
zero. This property is true for no other average.

To illustrate: Let it be required to find the mean weight of four
men, who weigh respectively 128, 140, 150, and 190 pounds. Their
arithmetic mean weight is

— 128 140 150 190
X = + 1_ + = 152 lbs.




28 STATISTICS AND HIGHWAY TRAFFIC ANALYSIS

The differences between the individual weights of these four
men and their arithmetic mean weight are:

Weights " Algebraic Differences
X X—X
190 38
150 — 2
140 — 12
128 — 24
Sum = 0

The above demonstration may be stated in the form of a Theo-
rem: The sum of the algebraic differences between the values of a
variable X and their arithmetic mean X is equal to zero.

Let X;(i=1,2,...,k) be the values of the variable X, let f;
(i=1,2,....,k) be the corresponding frequencies and let X be
the arithmetic mean. Then

k . k _k
Ellifi (X;— X) =§Jif1 Xi—Xgifi-

But X k .
?i f, =n and Zlh f; Xj = nX,

Hence X . . -
?ifi (Xi—X) =nX —nX = 0.

This Theorem may be expressed in terms of mathematical ex-
pectation as follows: The expected value B { X — E (X) } of the
deviations of a variable from its expected value E (X) is zero, that is:

E{X—EX)} =0 II. 14. 1.

Another characteristic of the arithmetic mean is its additive
property. The meaning of this property may be made clear by
finding the mean of two sets of given values. Let the first set be
115, 128, 140 and the second be 150, 190.

115 128 140

The arithmetic mean of the first set is = 127 2/8
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150 190
and of the second set is —~_;— = 170. The arithmetic mean of
115-+128 41404150+ 190_

= =

But the weighted arithmetic mean of the two arithmetic means
is

the composite of the two sets is 1442,

3 (1272) + 2 (170)

3+ 2
This illustrates a theorem: The arithmetic mean of the sum of two
variables 1s the weighted arithmetic mean of their arithmetic means.

Symbolically : 1f }_il is the arithmetic mean of the first set having n,
values and X, is the arithmetic mean of the second set having n,

values and if iﬁl +x, is the weighted arithmetic mean of the two
arithmetic means, then

— 3
= 144+.

Xz 4%, n i X IT. 14. 2.
where X is the arithmetic mean of the n, + n, values. This may be
generalized to any number of variables.

In terms of expected values the theorem is stated as follows: The
expected value of the sum of two variables is the sum of their expected
values, that is:

E (X, +X,) =E (X, +E(X,). IIL. 14. 3.

To illustrate another theorem, reconsider the set of values 115,
128, 140. If we multiply each value by 2, we have the values 230,
256, 280. The arithmetic mean of 115, 128, 140 each multiplied by
2is '

230 + 256 + 280 _ (115 + 128 + 140
+ - + =2{ + 5 + }:2(127§)

The theorem is: The arithmetic mean of a constant times a variable
is equal to the constant times the arithmetic mean of the variable.
In terms of expected values the theorem is: The expected value of
a constant times a variable is equal to the product of the constant by the
expected value of the variable, that is:
E (cX) = cE (X) II. 14. 4.
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Let us reconsider the arithmetic mean, namely:

k
ifi X
ThXe g g,

‘}_(_z =
n

Bi

k f
where Zi—i =1.
1 n

Tt is important to note that the coefficients of the Xj, namely,
the f,/n, are the relative frequencies of occurrence of these values.
But from the definition of statistical probability (see ChapterITI),
the limiting values of the f;/n, as n becomes large beyond all bounds,
are the pi, where p; is the probability of occurrence of a value X;
of X among a set of mutually exclusive values Xj.
Symbolically:
Xfy Xy

E (X) =lim X = lim

n->w n—>w

where p; X is the expected value of a particular value X of X and

2 p1 Xy is the sum of the expected values of the different par-

ticular values X; of X. But the sum of expected values is the ex-

pected value of the sum, and is called the mathematical expectation.
It is also known as the probable or expected value of the variable.

1t also follows from II. 14, 5. that the arithmetic mean X of a
sample is an approximation to the probable or expected value,
namely, the #rue or universe value.

The arithmetic mean is most important in estimating and pre-

dicting. The arithmetic mean X of a sample is the unbiased estim-
ator (a value whose expected value is the true value) of the true
mean of the population—the latter being E (X).

To illustrate: Suppose we have a considerable number of observa-
tions of the speeds in miles per hour of vehicles passing a given point.
These may vary, say, from 19 miles per hour up to 70 miles per
hour. Suppose we wish to answer the question: At what speed in
miles per hour will a vehicle pass this point? The answer definitely
is the expected value if we have the ‘“‘universe”, or the arithmétic
mean if we have a random sample of the observed speeds. The
arithmetic mean is the only one of the averages for a set of measure-

= Epi Xy II. 14. 5.
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ments that is an expected value. Furthermore, no quantity is of
any real value for predicting purposes unless it is a probable or
expected value or unless as determined from a sample it is an
oplimum or unbiased estimator. An optimum estimator is one that
is consistent, efficient, and sufficient.

Another important theorem concerned with expected values is:
The expected value of the product of two mutually independent vari-
ables is the product of their expected values. To illustrate:

Toss three pennies and throw three dice. The number of heads
occurring with the corresponding probabilities is shown in Table
I1.3. Likewise, the number of one spots occurring with the corres-
ponding probabilities is shown in Table I1.3.

Table I1.3
Pennies Dice
No. . No. of .
of Heads Probability One Spots Probability
X P1 Y P2
0 Ys 0 125016
1 %/s 1 /216
2 ®/g 2 /016
3 1/ 8 3 1/ 218
Table 11.4
ExPECTED VALUES
Pennies Dice
X X Y p:Y
0 0 0 0
1 3/ 8 1 75/ 2168
2 6/ 8 2 30/ 216
3 8/ 3 %216
E (X) 3/ E (Y) Ye
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In Table II.4 is shown the expected number of times for the
different possibilities for number of heads occurring as well as the
expected number of heads. Also, there is shown the expected
number of times for the different possibilities for number of one
spots occurring as well as the expected number of one spots.

Table I1.5 lists for the compound event the expected number of
times for the different possibilities for number of heads and one
spots occurring as well as the expected number of heads and one
spots.

Table I1.5
ExPECTED VALUES

Dice and Pennies

Heads One Spot Compound Probability

X Y P1P: XY pip,
0 0 125/1723 0

0 1 76/1728 0

0 2 15/1728 0

0 3 /1728 0

1 0 375/1728 0

1 1 5 1708 225/ 1728
1 2 /1728 %0/ 1228
1 3 3/1723 9/1728
2 0 %75 /1208 Y

2 1 225/1728 450/1728
2 2 45/1723 18‘:'/1728
2 3 3/1728 ls/'1728
3 0 128/ 1708 0

3 1 75/1728 225/1728
3 2 15/ 1728 /1708
3 3 1/1728 9/1728

E XY) = 12“/1723 = 3/4

From the above tables, it is seen that [E (X) = 2] [E (Y) =1]
= [E (XY) = 2] which symbolically is,

EXY)=E X)E (Y). I1.14.6.

In the case of two samples of data: The arithmetic mean of the

product of two mutually independent variables is the product of their
arithmetic means.
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This theorem may be generalized to any number of mutually in-
dependent variables.

I1.15. The Deviations from Any Arbitrary Value. The arithmetic
mean of all the deviations from any arbitrary number, added to
that number is the arithmetic mean of the values. This theorem
may be explained by considering the weights of five persons who
weigh respectively 135, 175, 180, 185, 190. Suppose we select
X, = 180 as the arbitrary number, then

X f x'=X—-X,

135 1 — 45

175 1 — 5

180 1 0

185 1 5

190 1 10
n==>5 — 35

and X =180 — 25 = 173.

This is a much shorter method than adding all the items and
dividing by their number.

Symbolically the theorem may be expressed as

X=X, +XZx"n
where ;

X, = any arbitrary value but usually a guessed mean meaning

that it is as near the actual mean as can be estimated.
x'’ = deviation of each value from X,, the estimated mean.
n = number of cases (individual values).

11.16. Mean Values in General. A Mean Value in general may be
thought of as the centroid of a frequency diagram. Let y ={£ (x)
be continuous in the x —interval (a, b).
Divide (a, b) into » equal parts, of length Ax andlet y; (i=1, 2,
..., n) be the value taken by y in the ith part. The arithmetic
mean of the numbers y;, y,, . ..., Yo, that is

Vi+¥:+ - Y1+ ..+ Y0
n

v = II. 16. 1.
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Ficure II. 8
GRAPHICAL REPRESENTATION OF THE MEAN VALUE

will approach a definite limit as » tends to infinity. If the numer-
ator and denominator of II. 16. 1. are multiplied by Ax, its form
is changed to
YiAX + YA 4 ... FydAx ... 4 yedx
. nAx
But nAx = b —a and the area 4 under the curve between the
limits @ and & is

A = Limit (y;,AxX +y,Ax + .... +71dx 4+ .... + yuAx)
A

X0
n—cw

b b

Hence, the mean value y of y is

n

b
Z y1Ax dx
y = Limit 1 =Ly
n—w nAX b'—a:

I1. 16. 2.

IT1. 16. 3.

Likewise, the mean value X of X is found by taking first moments
about the y-axis, namely:

AX =Jr xd A, whence

3
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j:xydx

b
&ydx

II. 16. 2. may be interpreted as the average weight of nAx
objects having various weights where Ax objects have a weight of
Y1, Ax have a weight of y,, -

II. 16. 3. may also be obtained by the use of momenis as illus-
trated in Figure IL. 8. Here y1Ax objects have, say, a distance x;.
The moment of y;Ax about the y-axis is xyyjAx. The moment of

n

X = 1. 16. 4.

the whole, if X is its distance, is X (b —a) and also }131 X1 y1 Ax.

n b
Hence: x(b—a)=1lm Xxy1Ax= | xydx,
AX—0 1 a
> Ax fbx ydx
— X
whence: x = lim INTE .
150 b—a b—a
The notion of mean is readily extended to functions of two or
more variables. To see this generalization, the reader is referred to
any book on Calculus or Mechanics.

11.17. The Mode. The mode or modal value of a variable is that
value of a variable which occurs most frequently, if such a value
exists. It is the most probable value, or in other words, the value
for which the frequency is a maximum. The expression most prob-
able value when it refers to the number of successes in # trials is
used in the general theory of probability to designate the number
to which there corresponds a larger probability of occurences than
to any other number. The point at which the frequency is most
dense is the abscissa of the maximum point of the frequency curve
and can be determined accurately only from the equation of the
curve.

For a given grouping the class mark of the maximal class fre-
quency is called the empirical mode.

An approximation to the mode may be obtained by passing &
parabola through the midpoints of the upper bases of the modal
class and the two adjacent classes. Figure II. 9. shows three such
points b, i, j.
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The general equation of a parabola with its axis parallel to the
y-axis is
y =« 4 Bx + yx3. II. 17. 1.
In Figure II. 9., take the origin at the point 0, namely, at the
lower limit of the modal class. Let ¢ equal the class interval and
A, =0G and Ay =ED. When x =—¢/2, y=0; x =c¢/2,
y=4:; x=3¢/2, y=A,—A,. Substitute these values for
xand yinII. 17. 1. and
0=a—B(/2) +7(3)
Ay =a +B(c2) +v () IL. 17. 2.
Ay— Ay =a 4P (3¢/2) +7 (99)
Solving these equations for «, B, v,
54, + Ay Ay A + 4,
A B S A S
c
The maximum point on the curve y = « + 8x 4 yx? is found
by setting

II.17. 3.

dyj/dx =8 +2vyx =0 II. 17. 4.
d’y/dx? =2y < 0

From II. 17. 4.,

X =—02y II. 17. 5.
y<o0 .

Substituting the values for g and vy from II. 17. 3. in II. 17. 5.,
X —( Ay )c II.17. 6
A T4, .17, 6.

The quantity found for x in II. 17. 6. when added to the lower

limit of the modal class is the approximate value of the mode,
namely

A
Mode =1 +< ! )c II.17. 7.
A A,

where
1, = lower limit of the class with maximum frequency.
Ay = fy—1; (See Figure II. 9.)
A, = f,— 1 (See Figure II. 9.)
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In Table II. 1., f, = 74, f; = 60, fr = 29. Substituting these
values in II. 17. 7., we obtain

) 5 = 40.7. II.17. 8.
14 + 45

The graphical counterpart of the solution just given for finding
the mode is as follows. Consider the distribution givenin Table II.1.

Mode = 39.5 -I—(

14

T0r

601

50

FTVK RIS 5

aor /

30r

Number of Vehicles

20r

---39.5+1.25

S
*-A =1, =60

345 395 445 495
Speed in Mtles Per Hour

Ficore I1. 9

GRAPHICAL SOLUTION
For FInDING THE MoODAL VALUE OF A SET OF OBSERVATIONS

From this table select the modal class and the class adjacent to it
on either side of it and for these three classes plot on graph paper
these three frequency rectangles as illustrated in Figure II. 9.
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Connect the points G and E with a straight line and the points O
and D with a straight line. Then from the point of intersection of
these two lines drop a perpendicular to the horizontal axis. The
number read on the horizontal scale at the point where this per-
pendicular cuts the horizontal scale is the graphical solution of the
mode. In this case it is 40. 8. Comparing the value of the mode
found graphically with the value of the mode just found arithmetic-
ally, it is seen that the difference is 0.1, which is negligible.

It is not difficult to show, that the abscissa of the point of inter-
section of the lines joining OD and GE is

X—< Al )c
T\A A,

which proves that the graphical solution given is theoretically the
same as the analytical.

It is obvious that for most practical purposes since graphically
the value of the mode can be obtained with slight error the
graphical solution of the mode will suffice. This result means that
the most probable speed of a vehicle at the point observed is 40.7 miles
per hour. In other words, more vehicles pass this point at aspeed
of 40.7 miles per hour than at any other speed.

I1.18. Median. The median of a variable is a number which is such
that half of the measurements have a value less than it and the
other half have a value greater than it. It is thus the abscissa of the
point the vertical through which divides the total area under the
frequency curve or frequency rectangles into two equal parts. To
compute the median of a sample set of » values of the variable,
compute the abscissa of a point, the vertical through which divides
the total area of the frequency rectangles into two equal parts.

INustration:

From columns (1) and (6) in Table IT. 1., and from Figure II. 10.,
it is seen that the sum of the frequencies (sum of the areas) of the
classes up to X = 34.5 is 106 and the sum of the frequencies (sum
of the areas) of the classes up to X = 39.5 is 166. But one-half the
total frequency is 150 which is between 106 and 166. Hence the



SUMMARIZING OF DATA 39

f
10r
60 )
|
|
EH 1
2 50 .
< ' |
o
: :
5 A40r I
S |
£ %
s 30 |
z !
N
£
20! n
(=
.S
d
=
rob ,
1
i )
0_/'17 'z} ["2) [z ["z) ) I‘-l;; 2] 3] [x] :;: 2 S
T2 3I 8 3 S I T I SE S

Speed in Miles Per Hour

Ficure II. 10
MEDIAN VALUE oF OBSERVED VEHICLE SPEEDS

median value, by definition, lies between X = 34.5 and X = 39.5
at a point which is the same proportion of the distance from
X = 34.5 to X = 39.5 as 150 is from 106 to 166.

Symbolically it is seen that

Median = 1, + (M) o IT. 18. 1.
fm
where
1, = lower bound of class in which median value falls.
n = total frequency.

f,, = cumulative frequency to lower limit of class in which
median value lies.
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fm = frequency of class in which median lies.

¢ = length of class interval.
Hence for the given distribution
150 — 106
Median = 34.5 + (———) 5=238.2 II.18. 2.

I1.19. Quantiles: Quantiles are location and division numbers.
They, like the median, divide the distribution into sections. There
are many quantiles, but we shall mention and briefly discuss ounly
those frequently used. There are the quartiles (quarters), quintiles
(fifths), deciles (tenths), and percentiles (hundredths). The method of
finding them is similar to that of finding the median.

A quantile value (or percentile) is a number such that the speci-
fied quantile (percentage) proportion of cases have a measure less
than it and the remainder have a measure greater than it. Sym-
bolically,

kn—f
Quantile = 1, + (%‘) c IT1. 19. 1.
a
where
1, = lower bound of class in which quantile value falls.
k = proportion of cases below specified quantile value.
n = total frequency.

fy, = cumulative frequency to lower limit of class in which
quantile value lies.
fqy ==frequency of class in which the specified quantile value
lies.
To illustrate: It is desired to find the lower quartile Q, or the
25th percentile and the upper quartile Q, or the 75th percentile.
In the former case, k = 1, and from columns (1) and (6) of Table
IL 1., it is seen that f;, = 43 and fq = 63 and 1, = 29.5. Hence

II. 19. 1. becomes
L (300) — 43
= 29.5 : S A—
Q=205 + (£

In the latter case, k = 2, it is seen that f,, = 166 and f; = 74
and 1, = 39.5. Here I1.19.1. becomes

3 (300) — 166
== 39.5 S —
Q; +( o

) 5=232.0 I1.19.2.

) 5 =43.5, I1.19.3.
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These two values mean that 25 per cent of the vehicles at the ob-
served point had a speed less than 32.0 miles per hour and 25 per
cent of the vehicles had a speed greater than 43.5 miles per hour.

If it is desired to know the 4th decile, then k = 0.4 in I1.19.1.
and if it is desired to know the thirty-second percentile, then
k = 0.32. In other words the 4th decile means a speed such that
0.4 of the vehicles have a lower speed and 0.6 a higher speed and
the thirty-second percentile means a speed such that 32 per cent
have a lower speed and 68 per cent a greater speed.

Having found the values of the arithmetic mean, the median
and the mode, what are the differences in their values and mea-
nings ? It can be proved that the median value always lies between
the arithmetic mean and the mode such that either

X < Median < Mode or
Mode < Median <X I11.19.4.

For the distribution of Table II.1., it was found that X = 38.2.,
the Median = 38.2., the Mode = 40.7 miles per hour. The apparent
equality of the median and arithmetic mean in this sample is due
primarily to grouping and sampling errors and to some extent due
to experimental error. The modal value of 40.7 reveals that a
greater proportion of the vehicles at the point observed travel at
a speed greater than the probable or expected speed of 38.2 miles
per hour. This observed tendency is important and can and must
be explained from a subjective study. The other results show that
25 per cent of vehicles travelled with a speed less than 32.0 miles
per hour and 25 per cent with a speed greater than 43.5 miles per
hour and 50 per cent with a speed of from 32.0 to 43.5 miles per
hour. The lower 25 per cent had a range in speed of 32.0 — 14.5
= 17.5 miles per hour, the middle 50 per cent had a range of
43.5 — 32.0 = 11.5 miles per hour, and the upper 25 per cent had
a range in speed of 74.5 — 43.5 = 31.0 miles per hour. Similarly,
the second 25 per cent had a range in speed of 88.2 — 32.0 — 6.2
miles per hour and the third 25 per cent a range of 43.5 — 38.2 =
5.3 miles per hour. These results indicate rather plainly a lack of
stability and uniformity in speeds due to drivers, type of vehicles,
and topography at point observed.
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I1. 20. Geometric Mean. The geometric mean of a set of n positive
measurements is the nth root of their product. If X, (i=1,2,....n)
are the n values for a variable X, the geometric mean,

n 1 1
GM. = (HiXi)ﬁ = (Xl'Xz N '}(n){l I1.20.1.

where I1 is the symbol for the product.
For a frequency distribution,

1
GM. = (X& -XE&-.... X, -Xfkp 11. 20. 2.
where iifi = n. It is significant that the
1

£, logX, +1f,logX, + ... + 1 log Xy
n

log. G.M. =

k
2111 f; log Xy

= 11.20.3.
n

This means that the logarithm of the geometric mean is the arith-
metic mean of the logarithms of the measurements. Recalling the
relationship between relative frequency and probability, it is
evident that as the number of measurements is indefinitely in-
creased the logarithm of the geometric mean becomes the probable
or expected value of the logarithm of the variable X.

For analyzing a frequency distribution, the geometric mean has
no immediate value. The geometric mean is the average of a set of
rates and is the only average which is the average of a set of rates
or the average of a set of things that behave like rates. Two ex-
amples will illustrate this property:

(1) A city had a population in 1900 of 100,000 and in 1910 of
120,000. What is the average annual rate of increase in population ?
This problem is analagous to a problem in compound interest
where the amount, principal, and time are known and the rate of
interest is to be found. Hence

Pp=P,(1 4 1) 11.20 4.
where
Pp = the population at the end of n years.
P, = the population at the beginning of the period.
n = number of time intervals.
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Substitute the above values in 11.20.4., then

120,000 = 100,000 (1 -+ 1)1
Solving for r, it is found that

r = .0184 = 1.849, change per annum.

(2) Given the information shown in tabular form

. Native Born | Foreign Born Rfmo of %Eatw of
Community Inhabitants | Inhabitants Foreign Born | Native Born to
to Native Born | Foreign Born
A a—9000 | c=4500 | c/a —=50% | ajc=200%
B b = 2000 d = 4000 d/b = 2009% | b/d = 50%

It may be shown that the arithmetic mean is not the average
rate of increase.

The arithmetic mean of the ratios of Foreign Born to Native
born is
509 2009 db «¢b d
A,—; /0=125%=c/a,+ / _° + a

2 2 ab
The arithmetic mean of the ratios of Native born to Foreign
born is

200% + 50%= 1259, =a/c +b/d ad + be
2 2 2 cd
Since the product of these two results is not unity or 1009, they

are illogical and the arithmetic mean is not the proper average to
use.

The geometric mean of the ratios of Foreign born to Native
born is

G.M. =}.50-2.00 = 1.00 = 100% = }/c/ad/b = J/cd/ab.
The geometric mean of the ratios of Native born to Foreign
born is

G.M. =1/2.00-.50 = 1.00 = 100%, = }J/ajc-b/d = }J/abjed
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The product of these two results is unity or 100%.

c+d _ 4500 + 4000 _ 8500 — 7727 = 77.27% and

s +b 9000 + 2000 11000

a -+b 9000 + 2000 11000

¢ +d 4500 + 4000 8500

¢c-+d a-+b

a+b ¢ +d
Since the product of the ratios must be unity, it is seen that the

geometric mean is the average rate.

Now

= 1.2941 = 129.419,.

But =1 and .7727 times 1.2941 = 1.

I1.21. Harmonic Mean. The harmonic mean of a set of measures
is the reciprocal of the arithmetic mean of the reciprocals of the
measures,

Symbolically, if H M. is the harmonic mean,

HM. — o I1. 21. 1.

fi/x; + /% + ..o+ fifxx
To illustrate: Suppose we have a vehicle that travels 25 miles
per hour for 20 miles, then 30 miles per hour for 10 miles, then
50 miles per hour for 50 miles, then 40 miles per hour for 10 miles
and finally, 12 miles per hour for 10 miles. What is the average
speed of this vehicle for the 100 miles travelled ? It is the harmonic
mean, namely,

HM

100
"7 20 (1/25) -+ 10 (1/30) + 50(1/50) -+ 10 (1/40) + 10(1/12)
= 31.1 miles per hour.
This average speed may be found by an arithmetic mean method
if weights are properly chosen. If X' is the symbol for the average
speed for an arithmetic mean method,

X'=
25{(.04) (20)}+30{(.033) (10)}+50{(.02)(50)} +40 {(.025)(10)} +-12{(.083) (10)}
3.21
_25(.8) + 30 (.333) + 50 (1) + 40 (.25) + 12 (.833)
3.21
_20.000 -+ 9.999 + 50.000 -+ 10.000 -+ 9.996

231 =31.1 miles perhour

where 0.8, 0.338, 1, 0.25, and 0.833 are the weights.
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The latter method, while it solves the problem, is not as direct and
simple as the harmonic mean. Of all the averages, the harmonic
mean is the only one that is the average time rate or the average
of things that behave like time rates.

I1.22. Root M ean Square. The root mean square R.M.S., 5, often called
the standard deviation in statistics is similar to the radius of gyration k
in mechanics. The radius of gyration of the area under a frequency
curve about the ordinate through the center of gravity of that
area is, in fact, equal to o.

The physical meaning of radius of gyration is that it is a distance
such that if all the mass of a body (or area) were concentrated at a
point that distance from an axis of rotation it would have the
same rotational effect as the actual distributed mass (area). It is
also the root mean square of the radial distances of a set of n equal
particles from an axis. In the same way, o, the standard deviation
of a frequency distribution (area) thought of as a set of n equal
particles of area is the square root of the arithmetic mean of the
squares of the radial distances of the several particles from the
centroidal axis, that is, it is the R.M.S. as well as k& with respect
to the centroidal axis.

It is believed that a review of the significance of second moments
and the radius of gyration k in mechanics will help to understand
the corresponding terms in statistics.

Let A be any area and YY an axis through the centroid O as
shown in Figure II. 11.

Let dA represent an element of area and let x be its distance
from the centroidal axis YY. :

The moment of inertia Iy is by definition the sum of all the
x2 dA, that is,

I, = | x®dA I1.22.1.
A
and the radius of gyration,

I
2 Y .22.2.
k N I

If the moment of inertia of an area with respect to a centroidal
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axis is known, the moment of inertia with respect to a parallel axis

may be found as follows:
In Figure IT.11., let Y'Y’ be any axis parallel to YY and at a

distance d from YY.

r

y y
) )

dA

D= Y —oetat— X —8=0

dA
0' 0 » X
d
y y
Ficure II. 11

MOMENT OF INERTIA
OF AN AREA WITE RESPECT TO A PARALLEL AXIS

The moment of inertia of the element dA about Y'Y’ is equal to
(x + d)? dA and Iy’ for the total area is

IY'=f(x+d)2dA

A

= x2d.A+2dfdi+d2 dA  TL.22.3.
A A

A
=T, + Ad?
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since fdi = Ax = 0.
A

The fact that Ldi: 0 may be comprehended if it is re.

membered that for every element dA on the right, there is an
element (dA)’ at a distance x’ to the left, such that x’ (dA)’ = xdA.
In other words, we may think of the area as being balanced about
the centroidal axis.

The frequency diagram in statistics may be treated in the
same manner as an area is treated in mechanics. The notation is
slightly different and so is the point of view and interpretation as
is shown in Figure II.12. Othérwise, the procedure is the same.

4

Fieure I1. 12
FrEQUENCY DIAGRAM

Using the notation shown in Figure I1.12.
o=k = (I/n) 3, (x — D). 11.22.4.
This may be written in the forml
2 6% = 2Kk = (1/n2) ;’1‘;1, (x1 — X,)? IL.22.5.

We thus see that the standard deviation is (1) the square root
of the arithmetic mean of the squares of the differences between
the measurements and their arithmetic mean and (2) proportional
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to the square root of an average of the square of the differences
between the measurements taken two at a time where the constant
of proportionality is (1 / VE)

In the continuous case, we may write

B f " f "(x —y) dF (x) dF (y)

=fwfwdF(x)dF(y){x2—2Xy+y2}

— J: 2 dF (x) f: dF(y)—.‘ZI:X(lF(X) f :de(y)
+ [ [yar

= 2up—2p% =2y, II. 22. 6.

The square of the standard deviation is the variance. It is also
the second moment about the mean. Variance is half the mean
square of all possible variate differences without reference to
deviations from a central value.

The arithmetic mean of the squares of the differences between
the measurements and their arithmetic mean is equal to the arith-
methic mean of the squares of the measurements minus the square
of the arithmetic mean of the measurements.

Expressed mathematically, it is,

Z(X—§)2_ZX2_<§§>2

11.22.7.

n n n

which, if the measurements are 3, 5, 6, 9, 12 becomes
B—TP+(B—T2+(6—T2+(9—T7?2+(12—T)
5
324 5%+ 62 4 9% 122 (3+5+6+9+12)2
5 5 ’

where 7 is the arithmetic mean of the measurements. This, upon

simplification becomes 10 = 59 — 49 = 10 which demonstrates
I1.22.4,
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Also
{B—3P +(3—57 +(3— 6 +(3—9) + (3 — 12 + (5—3)°
+ (55 + (5— 6 + (5—9)* + (5— 12)° + (6—3)* +(6—5)*
+(6—6)? (6 —9)* + (6 —12)* 4 (9—3)* + (9—5)* +(9—6)
+(9— 9 + (9 — 12) 4 (12 — 3] + (12— B)® 4 (12 — 6}
+ (12— 92 + (12— 12)2} =+ (5) (5) = 528 = 20 = 2 (10).

Hence 2 6% =2 (x; — x;)? becomes 2 (10) = 20
which demonstrates I1.22.5.

In case we have k values of X; and each value occurs several
times, or in case we have a frequency distribution where Xj is the
class mark of the ith class and f; is the frequency of the ith class,
it is convenient to write

L —a2 X 2 X 2
Zlifi (X3 —X) ?1 f; X 211 f; X4
= — I1.22.8
n n n

Considering the limit definition of probability, namely,
Limit fy/n = p;, we have

e E[(X—EX)]=EX)—[EX)]  IL22.9.

which in words is the theorem: T'he expected value of the square of
the deviation of the variable from the expected value is equal to the ex-
pected value of the square of the variable minus the square of the ex-
pected value of the variable.

In the special case when the class intervals are all equal, we may
use the value of X; from I1.11.7. in IT. 22.8 and then

2

k
% (X — X)° n n
0.2 — ﬂl—) = ¢2 21 f1 Xlz 21 f1 X1
n ! —\4 11.22.10.

n n

To illustrate, consider the distribution given in columns (1) and (2)
of Table II.1. and the tabulation as shown in Table I1.6.
Making use of formula I1.22.10., namely,

VZfs2 (Zfs>2
g—=2¢C - e —
n n

where now X = S and x =,
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Table 11.6.

SPEED IN MILES PER HOUR OF FREE MOVING VEHICLES ON SEPTEMBER 11,
1939, IN OAKLAWN, ILLINOIS ON U.S.H. 12 AND 20 AT A POINT ONE MILE EAST
OF HARLEM AVE.

Speed in miles Number of
per hour Vehicles
S f 8 fs fs?

70-74 0 6 0 0
65—69 0 5 0 0
60-64 2 4 8 32
55-59 15 3 45 135
50-54 14 2 28 56
45-49 29 1 29 29
40-44 74 0 0 0
35-39 60 —1 — 60 60
30-34 63 —2 — 126 252
25-29 29 —3 — 87 261
20-24 6 —4 — 24 96
15-19 8 —5 — 40 200

300 — 227 1121

Substitute the indicated values from Table II.6. in I1.22.10,
then

c=2>5

1121 (_227>2
300 \ 300

=5 V 3.7367 — 0.5726 = 5 (1.779)
= 8.9 miles per hour.

This means that we would expect the speed of a random vehicle
to be somewhere between 38.2—8.9 and 38.2 - 8.9 miles per hour,
namely, between 29.3 and 47.1 miles per hour.

From an examination of the distribution of speeds, we find that
approximately 71 per cent of the vehicles had a speed between
29.3 and 47.1 miles per hour. Hence this relative frequency tells
us that we are approximately 71 per cent certain that a random
vehicle will pass the intersection with a speed between 29.3 and
47.1 miles per hour.
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If on the other hand, we use the expected speed of 38.2 miles
per hour as our estimate, it is 71 per cent certain that we will be
in error by at most 6/X = 8.9/38.2 = 23.3 per cent. On the other
hand, it is 29 per cent certain that the error is at least 23.3 per
cent.

This indicates that there is marked variability in speeds and
there does not appear to be a typical speed at all for this point on
the highway.

I1. 23. Centra Harmonic Mean. The centra harmonic mean is a meas-
ure of relative dispersion. It is the arithmetic mean of the squares
of the measures from an arbitrary origin divided by the arithmetic
mean of the measures. Symbolically if C.H.M. is the centra har-
monic mean, then

CHM. =3, x2/3, %1 I1.23.1.
1 1

The centra harmonic mean per se is of very little use today.
However, a quantity similar to it, namely the coefficient of vari-
ability is useful as a measure of relative dispersion or a measure of
per cent of error. If C.V. is the symbol for coefficient of variability,
then, by definition

n 3 n
Zl'u (Xy— X)? 2131 Xy
B n

In II.22. the C.V. was interpreted for the distribution given in
Table II.1.

V. = g 11.23.2.

I1.24. Mean or Average Deviation. The mean or average deviation
from an average is the A.M. of the deviations treating them all as
positive. The deviations may be taken from any average, but the
mean deviation is least when the median is the origin.

In case of a normal distribution with origin at the arithmetic
mean or median, the mean deviation is the abscissa of the centroid
of area under the right hand half of the frequency curve and its
value is 0.7978 ¢ = 0.8 ¢ approximately. Assume the frequency
for each class concentrated at the center of class as shown in
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Figure I1.13. Let the distances of these centers from the center of
the class containing the median be d,, d,, ...

A

|
-.-C,‘_
E
L
1_ ra—f—d, g
et -]~
o > X

Ficore I1.13
MEAN OoR AVERAGE DEVIATION OF A SET 0F OBSERVATIONS

and let the corresponding class frequencies be f;, f,, . .. so that the
sum of moments about the median is f,d; + £,d, + ... + fudy.
Ignore the class containing the median for the present. All the prod-
ucts whose deviations lie below (to the left of) the median have
deviations too short by an amount C and those above (to the right)
are too long by an amount C. Next consider the sum of the devia-
tions below the median class and above the median class, If N, is
the number of observations above and Np the number below the
median class, then we have as a first correction

(Np —N,) C. I1.24.1.
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If Ny, is number of observations in the median class and if we
assume these Ny observations uniformly distributed over the
interval, then (.5 + C) Ny cases are below and (.5 — C) Ny, are
above the median. With a uniform distribution, the sum of these
deviations below the median is

2 e
('jig)ﬂ and above the median w

Hence the sum of all the deviations of the Ny, values is

(5+CFNm  (5—0FNn

= (. ) N I1.24.2.
- - (25+C?) Np. IL.24

which is the second correction.
Let us now find the mean deviation from the median for the
distribution given in Table II.1.

Table I1.7.

SPEED IN MILES PER HOUR OF FREE MOVING VEHICLES ON SEPTEMBER 16,
1939, IN OAKLAWN, ILLINOIS, ON U.S.H. 12 AND 20 AT A POINT ONE MILE EAST
OF HARLEM AVE.

X=8 f x =38 f |s]*
70-74 0 7 0
65—69 0 6 0
6064 2 5 10
55-59 15 4 60
50-54 14 3 42
45-49 29 2 58
40-44 74 1 74
35-39 60 0 0
30-34 63 —1 63
25-29 29 —2 58
20-24 6 —3 18
15-19 8 —4 32

300 =n 415

* The symbol |s| means the numerical value of 8 which is always positive or zero.
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Correction (1): (Np —N,) C= (106 — 134) (1.2)= — 33.6
Correction (2): (.25 4 C?) Np= (.25 + 1.44) (60)= 101.4
Sum of deviations for classes other than median class = 415.0

Sum of all deviations 482.8
482,
Mean Deviation = =00 = 1.609 class intervals

= 8.05 = 8.1 miles per hour.

This means that the expected value of the difference between
the speed of a vehicle and the median value of speeds is 8.1 miles
per hour.

Given N values. Choose a certain number as origin such that x
of the values will be greater than this number. Then N — x will
be less than the selected number. Let the deviations from the
selected number (average) as origin be A. Displace the original
origin by K units so that it is exceeded by only x — 1 values. Then
N — (x — 1) of the values will be less than the new number. By
this change, the sum of the deviations in excess of the selected
number is decreased by Kx, while the sum of the deviations less
than the selected number is increased by (N — x) K. If A’ is the
new sum of deviations, then

A=A+ (N—x)K-—XKx and
A=A+ (N—2x)K.

Ifx =N/2; A" =A.

Ifx > N/2; A" <A

This proves that the sum of the numerical values of the devia-
tions from the median is & minimum.

I1.25. Moments and Mathematical Expectation of Powers of a Vari-
able.

The moments of a distribution are the expected values of the
powers of the stochastic variable which has the given distribution.
The term “moment’ has been taken over by the statistician from
mechanics. In mechanics, moment is a measure of a force with
respect to its tendency to produce rotation. In statistics moments
characterize the parameters of the distribution law which are the
properties that describe for interpretation and meaning the law of
behavior of the attribute that is being measured and studied.



SUMMARIZING OF DATA 55

The late Karl Pearson (Biometrika, Vol. 9, pp. 1-10) has shown
that all the constants of a frequency distribution are expressiblein
terms of higher product moments. In the case of two variates, they
are defined by

n
Vg, 0 = %"u {Pu' x? yi? } 11.25.1.

for an arbitrary origin. If the origin is at the mean, namely, at
P (x, y), then

bq, 00 = Elij {Pij (x1 —x)* (y; — 57)“'} I1.25.2.

In case of a single variable, the kth moment of a continuous
variable 2 about an arbitrary origin denoted by vk is

b
v = E (x¥) =f xkf (x) dx I1.25.3.
a
and in the case of a discontinous variable x
n
Vg = E (Xk) == Eipi Xik. I1.25.4.

As has been seen, the first moment about an arbitrary origin is
the probable or expected value and in case of a sample it is the
arithmetic mean of the x values.

The k th moment of the variable x about an arbitrary point a is
defined as

E [(x —a)¥] =fb(x —a)kf(x) dx 11.25.5.
or
E [(x —a)k]= ﬁ:}i (x1 — a)k p1. 11.25.6.

If @ is the arithmetic mean X of x and if y is the symbol for the
k th moment about the mean, then

ue=E [(x —X)k]=E [(x — v))x] = f b(x —y)kf(x)dx  II.25.7.
or
Uk =E [(X -_— Vl)k] = Zlipl (X1 -_ Vl)k. 11.25.8.

Tt is not hard to see that p, = ¢



56 STATISTICS AND HIGHWAY TRAFFIC ANALYSIS

It is easy to show that the moments about the mean can be ex-
pressed in terms of the moments about an arbitrary origin. These
relations are:

k b
pr== ?i P1 (X1 — vy =f (x— v) {(x) dx I1.25.9.
Specifically:
o =1
=0

— 2
Ho = Vo= Vq

g =v3—3 vy vy + 2
g =vg—4v3vg +6v2v,—3v? I1.25.10.

r!

P-r——z < ) —v;)! vr_1 , where (f)= m » hamely the

number of combmatlons of r things taken ¢ at a time.

For a sample

k
we= 2y f1 Xifn. I1.25.11.

k —
and pr= Zl‘,i f; (X3 — X)'/n. I1.25.12.

Now consider the translation x’'— X — X, and if v, = the
rth moment of x’, then

k 2 fy (Xl)
Vr= %i i (X5 — Xo)’/n—. _— v; I1.25.13.
n

X— "
and similarly if x= and v, is the rth moment of x

c

2 f1 (CX)r ¢ E f1 x’

ve= =y, I1.25.14.
n n

Hence:

pr = 201 (f) (— v)' Vit I1.25.15.
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and

T .
ur = (f) (— vy I1.25.16.

1

To illustrate: Consider the distribution of Table II.1. and find
the first four moments about the mean using I1.25.10 and 11.25.16.

Table I1.8.

SPEED IN MILES PER HOUR OF FREE MOVING VEHICLES ON SEPTEMBER 16,
1939 IN OARLAWN, ILLINOIS, ON U.S.H. 12 AND 20 AT A POINT ONE MILE EAST
OF HARLEM AVENUE

S f s fs fs? fg3 fst
70-74 0 6 0 0 0 0
65-69 0 5 0 0 0 0
60—64 2 4 8 32 128 512
5559 15 3 45 135 405 1215
50-54 14 2 28 56 112 224
45-49 29 1 29 29 29 29
40-44 74 0 0 0 0 0
35-39 60 -1 —60 60 -60 60
30-34 63 -2 -126 252 504 1008
25-29 29 -3 —~87 261 —783 2349
20-24 6 -4 —24 96 —384 1536
156-19 8 -5 -—40 200 -1000 5000

300 =n -227 1121 -2057 11933
From Table I1.8.
v =1
— 227
v = — = —0.75667
300
. 1121
v, ) =—— = 3.73667
300
— 2057
vy == —— = — 6.85667
300
" 11933
v =— = 39.77667

300
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Hence from I1.25.10 and I1.25.16., it is found that

wo = 1.
w = 0.
g = €2 (v, — v;""%) = 25 (3.73667 — .57255) = 79.1
g = €% (v — 3 v v, + 2 v,"’3) = 125 [— 6.85667
— 3 (— 0.75667) (3.73667) + 2 (— 0.75667)%] = 311.5

e =0 (vg" — 4 v v 46 v, v, —3 v,

= 625 [39.77667 — 4 (— 0.75667) (— 6.85667) 4 6 (0.75667)2

(3.73667) — 3 (— 0.95667)%] = 18342.1

It is also useful to find
u2  97032.25

g2 =1 _ T 0,196 11.25.17.
uf  494913.67

and
n,  18342.1

Ba 7975 o903, 11.25.18
uf  6256.81

Be =

B; is an index of skewness and is useful to compare the intensity
of the departure from symmetry of a distribution with another
distribution. If the distribution is symmetrical, %, has the value
Zero.

B, is an index of kurtosis (flatness) and is sometimes used to
determine whether a given distribution is more flat or less flat than
a corresponding ‘‘normal” distribution.

B3 and p3 are useful for determining which curve of a set of
curves is indicated by the data as a useful law of behavior. The
theory attached to these concepts was developed by the late Karl
Pearson and will be discussed briefly in Chapter I11.

I1.26. Relation Between Means. For positive numbers,

3 <X<...<X
5 <HM <GM <AM <RMS.<CHM. < xp.

I1.27. Desirable Properties of An Average.
(a) An average should be precisely defined.
(b) An average should be based on all observations.
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(c¢) An average should possess some simple and obvious proper-
ties to render its general nature comprehensible: it should
not be too abstract in mathematical characterization.

(d) An average should be possible of easy and rapid calculation.

(e) It should be as little affected as may be possible by fluctua-
tions of sampling or by sampling errors.

(f) The measure chosen should lend itself to algebraic treatment
and its basis should be concordant with the basis of the
problems to be analyzed.

These properties applied to the mean, median, and mode, geo-
metric mean, and harmonic mean are:

1. Arithmetic Mean. The A M. satisfies a, b, ¢, d, e, f. The arith-
metic mean has the following properties.

(a) The sum of the deviations from the mean, taken with their

proper signs is zero.

(b) The mean of a whole series can be readily expressed in terms
of the means of its components.

(c) The mean of all the sums or differences of corresponding
observations in two series (of equal numbers of observations)
is equal to the sum or difference of the means of the two
series.

(d) The sum of squares of the deviations from the arithmetic
mean is a minimum.

II. Median. The median satisfies (b) and (¢) but the definition
does not necessarily lead in all cases to a determinate result. The
median is easier to compute than the arithmetic mean. The arith-
metic mean is superior to median in lending itself to algebraic
treatment. No theorem for median exists similar to (b) for mean
and likewise to (c¢). The median has the following advantages over
the mean:

(a) It is very readily calculated: a factor to which, however, as

already stated, too much weight ought not to be attached.

(b) It is readily obtained without necessity of measuring all
objects to be observed.

(¢) Sum of the deviations from Median, all > 0, is 8 minimum.

III. Mode. What we want to arrive atis the mid-value of the inter-
val for which the frequency would be a maximum, if the intervals
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could be made indefinitely small and at the same time their
number be so increased that the class frequency would run
smoothly. A smoothing process is necessary; viz. that of fitting
an ideal frequency curve of given equation to actual figures.

IV. Geometric Mean. The geometric mean is used in averaging

rates or ratios rather than quantities.

(a) If the ratios of the geometric average to the measures it ex-
ceeds or equals be multiplied together, the product will be
equal to the product of the ratios of the geometric average
to those measures which exceed it in value.

Ifx <x,<x3< ... <xk<G.M.<xk+1<xk+2<...‘<xn,

then, &.% . G _Fkn Fww X 11.27.1.

(b) The geometric average of the ratios of corresponding obser-
vations in two series is equal to the ratio of their geometric
averages.

(c) The geometric average of the series formed by combining n
different series each with the same frequency is the geo-
metric average of the geometric averages of the separate
series.

V. Harmonic Mean. The harmonic average of a set of measure-
ments must be used in the averaging of time rates.

Having shown the initial procedure necessary for a statistical ana-
lysis, namely, how to summarize data and how to obtain summary
numbers for the purpose of characterizing the law of behavior of
the observed facts, we shall now develop the necessary theory that
is basic for the analysis and solution of traffic problems.
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CHAPTER III

STANDARD DISTRIBUTIONS
AND THEIR MATHEMATICAL PATTERNS

III. 1. Objective. The purpose of this chapter is to explain therelated
problems of first ascertaining the nature of a universe of events and
second finding a mathematical model or pattern that fits the
universe. From experience and intuition, we know that a sample
will tell us something about the entire series of events, and that
the larger the sample the more accurately it reflects the character-
istics of the parent universe. We reason that a mathematical model
of the sample, if the sample is large, will also be a model of the
universe. Obviously, this fitting of mathematical patterns will be
much easier if we know something about the types of universes or
distributions of events we may expect to find.

There are three of these theoretical distributions that constitute
the basic patterns. They are, in the order of their discovery, the
Binomial (James Bernoulli about 1700), the Normal (Demoivre
about 1700, Laplace and Gauss about 1800), and the Poisson (B.D.
Poisson about 1837). Other distribution patterns have been dis-
cussed by Gram (1879), Fechner (1897), Thiele (1900), Edgeworth
(1904), Charlier (1905), Brun (1906), Romanowsky (1924), and
others. These are in general either other approaches to, modifica-
tions, or generalizations of the three basic distributions. The most
logical order to present these from the standpoint of clearnessis
also the historical order of appearance. But before considering the
first of these, the Binomial distribution, we shall discuss the ele-
ments that make up a distribution.

II1.2. The Elements of a Distribution. In order to}deﬁne and to point
out the interrelationships of the elements that make up a distri-
bution, let us consider a trial like the throwing of a die. The result
will be the happening or non-happening of a specific event such as
the falling of the die with one spot on the top face.

An event, of course, can be the occurrence of any attribute or

- 61
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characteristic as well as a happening. In traffic, for example, it
could be the age of a driver, his seeing ability, the life of an auto-
mobile tire, the weight class of a truck, the volume of traffic, the
speed of a vehicle, or any one of many other things.

The happening of a specific thing is called the Event E, and the
non-happening is called the complementary event . If the die is
thrown a limited number of times (number of trials), we get a
sample distribution of B’s and E’s. If the number of trials is in-
creased without limit, the observed sample distribution approaches
the true or theoretical distribution of the universe or total popula-
tion of the events.

There are thus two kinds of distributions: (a) the theoretical
and (b) the experimental or sample distribution.

The Theoretical Distribution: In order to explain the theoretical
distribution, let f; be the number of ways in which the event E can
take place, f, the number of ways for the complementary event E,
and n the total number of trials or happenings and non-happen-
ings.

The probability that the event E will occur is the ratio of the
number of ways f; in which E can happen to the total number of
possible and equally likely happenings and non-happenings. Let
p or P (E) be this probability, then symbolically

p =P (E) =fin TI1.2.1.
Similarly, the total number of ways f; in which the event E can

happen divided by # is defined as the probability (a- priori, true, or

theoretical) that the event E will occur. Let ¢ or P (E) be this
probability, then symbolically

n—f_, % 111.2.2.
n

q =P (E)=f/n=

In the case of a die, if F is the event of the die’s falling with one-

spot on the top face and E is the event of the die’s falling some
other way, then fi=1, fi=5,n=26
and

p=P(E)=%;q.=P(]—4])=%; and p+q=Lr+5=1
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Again if » is the total number of registered vehicles and f; is the
number of light trucks, then

1
=P(E) = -
P (E) 3

is the true probability that a vehicle is a truck.

In general, let @ be the number of times the event & occurs, and
let b be the number of times the event £ occurs, these being the
only possibilities. Then p = a/(a + b) is the probability that the
event happens as specified — event E, and q = bf(a + b) is the
probability that the event does not occur - event E. Tt follows that
p + q = 1, which simply demonstrates what we know intuitively
that an event is certain to happen or not to happen. This also
shows that both p and g are positive numbers. This is the Funda-
mental additive property in probability. This property is also re-
ferred to in the literature as the Rule of Complementation.

Let us now suppose that one tosses a penny twice and wishes to
find the probability of getting two heads. One might reason falsely
that there are three possibilities: two heads, two tails, or one head
and one tail. One of these outcomes is two heads, therefore, one
might reason that the probability is 4, but this reasoning is false,
for the events are not equally likely. The third event may occur in
two ways for a head could appear on the first trial and the tail on
the second, or the head could appear on the second and the tail on
the first. There are really four equally likely outcomes or phases:
HH, HT, TH, TT; and the correct probability is therefore +. The
four events are independent and mutually exclusive. If two heads
are up, that is the only possible combination, for if a penny is
heads up, it obviously cannot at the same time be tails up. This
mutual exclusiveness does not always exist. Suppose that one
wishes to compute the probability of drawing a king or a heart
from a deck of cards. The chances might be assumed to be -
since there are 4 kings and 13 hearts. But this is incorrect, for the
drawing of a king does not exclude drawing of a heart. The king
may also be a heart.

The Experimental Distribution: The experimental or sample
distribution is obtained from a number of observations of events.
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Let £, be the number of times the event E is observed to happen
and n the total number of trials or observations. The ratio fy/n is

f
called the relative frequency of the event K and (1 - —0) is the rela-
n

tive frequency of the event K.

The obtaining of the numerical values of the relative frequencies
f,/n is actually a very simple problem since it is essentially a
problem of counting. The value of fy/n in contrast to the true
probability varies with the number of observations or trials n.
One might count all the traffic violations that occurred at an inter-
section during the passing of 5000 vehicles and find that there
were no violations. In this situation, the observed f, = 0, n = 5000
and fy/n = 0/5000 equals zero. But if the violations occurring
during the passing of 25000 vehicles were counted, it might be
found that there were 4 violations, and now the observed f, = 4,
n = 25000, and fy/n = 4/25000. Actually, we need to know the
probable or expected value of such observed relative frequencies,
fo/n. This is defined as the true probability p that the event E will
occur and it is the limit that f;/n approaches as the number of
trials (observations) is indefinitely increased. Expressed symbolic-
ally, if E (fy/n) is the symbol for the probable or expected value of
an observed relative frequency fo/n, then

E (f_0> = Limit (f_") =p=7pE) II1.2.3.
1 n—w \Il

It should be noted that in actual cases » need not be infinite to give
a practical result. It is, however, necessary that » is not small.

The discussion just given may be summarized with two defini-
tions:

Definition 1. If an event E can happen in f; cases out of a total
of n possible cases which are all considered by mutual agreement
to be equally likely, then the probability p = p (E) that the event
E will occur is defined to be (f;/n). Symbolically, p == P (E) = fi/n.

Definition 2. If a series of many observations or trials is made,
and if the ratio of the number of times, f,, the event E occurs, to
the total number of observations, n, namely, f,/n, approaches
nearer and nearer to a definite number, p = P (E), as larger and
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larger sets of trials or observations are made, then the probability
of E is defined to be p. Expressed symbolically,

Limit (fe) —p—"P(E)
n-rw \Il

An important question yet to be answered is: How much in
error is f,/n from p for a given number of observations and how
certain are we that this error is not exceeded ? In other words, for
a given degree of certainty, how large a sample of observations
must be made to guarantee that a specified error will not be ex-
ceeded ?

This question is answered by the fundamental theorems of
Bernoulli! and Cantelli# and by the Bienayme - Tchebycheif
criterion,3 which will be stated without proof.

111.3. Bernoulli’s Theorem.! Bernoulli found that there is a definite
number of observations that will give a certain assurance that a
given error will not be exceeded. His finding is based upon a
natural law which may be demonstrated by the tossing of a penny.
If the penny is not defective, the probability p of getting a head is
1 TLet us now assume 4 heads have been obtained in 10 tosses.
This relative frequency (fo/n) or - is in error from the true or
theoretical probability p of 1by 0.1. Let us next assume that we
have tossed the penny 100 times and obtained 51 heads. The re-
lative frequency - is now in error by only 0.01. With more tosses
there would be a tendency toward a further decrease in error which
would lead us to suspect that something may be known about the
number of trials that are necessary in order to get from observa-
tions a probability that will differ from the theoretical probability
p by less than an arbitrarily assigned positive quantity ¢, known
as the experimental error.

The next question to be answered is how certain are we that the
error will not be more than €. The measure of our confidence that
¢ is the maximum error is indicated by attaching a probability to
e. This probability is dependent upon the number of trials n.

The probability = that ¢ is not the maximum error is the com-
plement of the probability that ¢ is the maximum error. This



66 STATISTICS AND HIGHWAY TRAFFIC ANALYSIS

probability, v, is the measure of our lack of confidence that ¢ is not
exceeded and is called the level of significance. If v is the level of
significance, then 1 — v is the measure of our confidence or ability
to prove that ¢ is not exceeded. The number, Ela, is also some-
times called the risk. In common parlance, if we are 75 per cent
certain of our result, we are 25 per cent uncertain, or in other
words, the risk is 25 per cent.

If we wished to find the size of sample necessary to give us a
99 per cent guarantee that the relative frequency (f,/n) obtained
would differ from the theoretical probability p forthe universe by not
more that 0.03, ¢ would be 0.03 and » would be 0.01. The value of
0.01 for ) would mean that 1 per cent of the time it would be impos-
sible to explain the difference between the observed and the theore-
tical frequency other than that it just happened. In other words, it
would mean that the odds are 99 to 1 in favor of finding at least
one real reason for the existence of the difference other than that
it was merely accidental.

Having examined the underlying theory of Bernoulli’s theorem,
we will now state it more rigorously: For any arbitrarily given
e> 0 and 0 <n <1 there exists a number of trials n, dependent
upon both < and v {symbolically ny (e, 1)} such that for any single
value of n > ny (g, 1), the probability that the observed relative fre-
quency, (fo/n) of an event E in a series of n independent trials with
constant probability p will differ from this probability p by less than
&, will be greater than 1 — .

Symbolically, this is written

P{|fsn —p|<e}>1—1y for n>n,. II1.3.1.
The n > n, in Bernoulli’s theorem is given by the following in-
equality:

1 1 1
t Cog, - 2 TIL.3.2.
2 )

n > ny=
€

Example 1. Given ¢ = 0.01 and v = 0.01. Substituting these given
values in the inequality III.3.2., we get

1 1
og,~—— + ——, whence n > n,= 46613.

120,
B> Po= 51 %8001 T g1
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In this example, n, = 46613. However, n is any single number
greater than 46613.

Ezample 2. Given ¢ = 0.01 and » = 0.05. Substituting these
given values in the inequality III.3.2., we find that

. 1 1
(—.01—)210ge .08 -+ o1 whence n > n, = 30357.
Hence n, = 30357 and n is any single number greater than 30357.
A comparison of the results of the two examples shows that re-
ducing the certainty from 99 per cent to 95 per cent reduced the
size of the sample required from 46614 to 30358.

Increasing the allowable experimental error will also decrease
the size of the sample required.

Example 3. Given ¢ = 0.05 and » = 0.05. Substituting these
given values in ITI.3.2., it is found that

_los 1 1
n> o= 05 505 T 0.05
Under the conditions, n is any single number greater than 1278.

The result of Example 3 means that if a random set of 1279 ob-
servations is taken, we are 95 per cent certain that the true probab-
ility p for the occurrence of the event E will be between the values
f,/n — 0.05 and f)/n + 0.05. This may be expressed symbolically as

P{|fn—p| <0.05}> 095
for any single n > 1278. There are similar interpretations for ex-
amples 1 and 2.

An examination of Bernoulli’s theorem shows that the number
of observations necessary for a given result is totally independent
of the true probability p and hence is independent of the theore-
tical distribution law. In other words, without knowing anything
about the nature of the law of behavior, it is possible to determine
the sample size for a specified accuracy and certainty. If, however,
we have some knowledge of the law of behavior which is the case
in nearly all practical applications, the size of the sample will be
much smaller than indicated in Examples 1, 2, 3, — sometimes
even less than 100. This will be made more apparent in later dis-
cussions.

n > ny=

whence n > n, == 1278,
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For the sake of clarity, let us summarize the various aspects of
Bernoulli’s theorem. This theorem is based upon the law that as »
increases, the measure of uncertainty » decreases. It enables us to
find for a fixed error ¢ and measure of uncertainty v the size of a
single n. This being the case, it is now possible to learn how large
n must be so that the sum of all the decreasing measures of risk
(the »’s) for all N’s larger than n, is less than a selected » and an
assigned error . It follows, of course, that if the sum of the risks
in question is less than v, then any one of them is less than v.

More precisely: Instead of there being any single n > n,, for
a given ¢ and v there is a number of trials, N, which is such that
the sum of the risks for all n’s > N, is at most ». The number N is
found by Cantelli’s theorem.

IIX. 4. Cantelli’s Theorem.2 For a given << 1, << 1, let n >N (g, 1)
be an integer satisfying the inequality:

2 2
n> ? ].Ogev—] + 2. III.4.]..

With the value of n given by the inequality, the probability that the
observed relative frequency (fo/n) of an event E will differ from the
actual theoretical probability p by less than < in the nth and all the
Jollowing trials is greater than 1 — .

Thus Cantelli’s theorem, as noted above gives the probability
for all w’s > N (g, 1), namely forn =N, N - 1, N 42, ..., that
| fo/m—p I < e. The complementary probability is the probability
that at least one of the inequalities | foln —p | < ¢ is true where n
may be equal to either N, or N + 1, or N + 2, ... Since these
different possibilities form a set of mutually exclusive events it
follows that the probability that at least one of the events has
occurred is the sum of the probabilities that that one and all the
following events have occurred.

Now, if Q(Q <) is the probability of this complementary
event then it is the probability that the experimental error is at
most ¢ in the nth and any or all of the following trials.

If we know or specify any two of the quantities n, ¢, 7, the
third may be found in terms of Bernoulli’s theorem (III.3.2.) or
Cantelli’s theorem (III1.4.1.).
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Since the probability that the experimental error is at most
in any single number of trials greater than a given number n, is
more restricted than the probability that the experimental error
is at most ¢, in all the number of trials greater than N, we would
expect, as is the case, that more trials are necessary for the less
restricted situation covered by the Cantelli theorem than are
necessary for the Bernoulli theorem.

Tt is important to note that in both Cantelli’s and Bernoulli’s
theorems, the number of trials necessary is independent of the
probability p that the event will happen as specified and hence
is independent of the distribution law. In other words, the results
are true as long as we are sure that the event will happen or will
not happen, or speaking mathematically, so long as it is true that
P +q =1 where ¢ is the probability that the event will not
happen as specified.

If the value of p is known which is the same as saying that we
know the distribution law, and # is also dependent on p then, in
general, the number of trials found from theorems I11.3.2. and
II1.4.1. is much too large. This fact will be demonstrated later.

Example 1. Letting ¢ = 0.01 and % = 0.01 as in example 1
above and substituting these given values in the inequality III.4.1.,

2 2
n> —loge +2= mlogeo ol + 2, whence

n > 152,021.

In this example, N =n 4 1 = 152,022. Therefore in the
152,022nd trial and all the following trials (and hence in at least
one) we are assured that the observed relative frequency (fo/n) will
differ from the theoretical probability p by at most 0.01 and that
it is (1— ) = 0.99 equals 99 per cent certain that this is true
and only 1 per cent uncertain that this is true.

Example 2. Let ¢ = 0.01 and » = 0.05, then III.4.1. becomes

2 2
n 2, wh
>(001)2 g8005+ whence

n > 119,832,
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Example 3. Let, as in example 3 above, ¢ = 0.05 and » = 0.05.
In this case, I11.4.1. becomes

n > (00—5)2 log, (—)% -+ 2, whence n > 4796.

The results of these examples when compared with the minimum
number of trials necessary when using Bernoulli’s theorem show
that Cantelli’s theorem requires more trials. This is because Can-
telli’s theorem gives a value for all n’s greater than N while Ber-
noulli’s theorem gives a value for any single n greater than n,. In
either case, as the number of trials is increased, the probability
that the experimental error ¢ has a specified upper limit becomes
greater and greater, and » becomes smaller and smaller.

The theorems of Bernoulli and Cantelli are based upon the idea
that there is definite probability that the values of a stochastic
variable will fall within a specified range.

Another approach is to find the probability that a stochastic
value taken at random will differ from some chosen value a by as
much as a specified amount, D. This probability is given by the
Bienaymé-Tchebycheff Criterion.3

IIL.5. The Bienaymé-Tchebycheff Criterion.® This criterion is inde-
pendent of the form of distribution of given measurements and in
addition is independent of the origin. If X is the stochastic variable
which may assume the values X;(i=1,2, ...,n), and if p1{i=
1,2, ...,n) are the corresponding probabilities, where Zp; =1
and if a is any number (origin) from which the differences of the
X’s are measured, then

D2=<E (X1 —_ a)2 = 2 P1X12 II1.5.1.
where xy = x; — a and D? is the expected value of the squares of

the differences of the X’s from a.
Under these conditions, it is found that, if A > 1,

P (D) <12 III.5.2.
This expression, wherein (A D) means A times D and A equals the

multiple of the differences D from the chosen number g, is the
Bienaymé-T'chebycheff Criterion.
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The criterion, to state it in words, says that the probability
P (A D) is not more than 1/A% that a stochastic variable taken at
random will differ from some chosen number a by as much as
A (A > 1) times the value of D. A very useful special case is when
a is the probable or expected value.

Example 1. If the probability P (A D) = % < .01 and ¢ = .01,
then for any @ and p, A must be Y100 = 10. It will be seen later
- that n must be greater than 250,000.

Ezample 2. If the probability P (A D) =y < .05 and ¢ = .01,
then for any @ and p, A must be y20. In this case n > 50,000.

Example 3. If the probability P (A D) =% < .05 and ¢=.05,
then for any a and p, A must be y20. In this case n > 2000.

These illustrations demonstrate that quite frequently the ex-
perimenter gathers more data than is necessary for the accuracy
required. This makes the cost of the study unnecessarily large and
demonstrates a lack of efficiency as well as an approach that is
scientifically unsound.

If we have a limit definition of probability, Bernoulli’s theorem
is an immediate consequence thereof. In case we have any defini-
tion of probability p for the event E happening as specified, it is
possible to prove Bernoulli’s theorem by the use of the Bienaymé-
Tchebycheff criterion. This will be shown later in this chapter.

In general, the evaluation of the probability of a given chance
event necessitates the enumeration of all possible outcomes. These
outcomes as shown by the tossing of a penny or the drawing of a
card involve combinations and arrangements (permutations) of
happenings.

II1.6. Permutations and Combinations. There are two basic prin-
ciples in combinations:
1. If an event A can occur in a total of @ ways and an event B
can occur in a total of b ways, then A and B can occur in
a + b ways, provided they cannot occur at the same time.
2. If an event A can occur in a total of @ ways and an event B
can occur in a total of b ways, then A and B can occur to-
gether in a - b ways.
These two principles can be generalized to take account of any
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number of events. Three independent events A, B, or C can occur
in a +b 4 ¢ ways and three events A, B, and C can occur to-
gether in a-b-c ways.

These ideas may be illustrated by letting A represent the draw-
ing of a heart from a deck of cards and B the drawing of a spade.
Since there are 13 hearts, there are 13 ways of drawing a heart,
and likewise for spades. The number of ways in which a heart or
a spade can be drawn is 13 + 13 = 26. The second principle is also
illustrated by the drawing of a heart and a spade together. There
are 13 -13 ways of doing this, for with any one of the 13 hearts we
may put one of the 13 spades, and with any one of the 13 spades,
we may put one of the 13 hearts and so on.

A more general illustration of the second principle is that of a
room in which there are n seats and x individuals to be seated, and
where x < n. We wish to know, in how may different ways (arrange-
ments or permutuations) these x individuals may be seated in the
room. To find out we may proceed as follows: Assume that all the
x individuals are outside the room. The first one to come in has n
choices. He seats himself. When a second individual comes in, he
has (n — 1) choices, or one choice less than the first individual.
For the third individual there are (n — 2) choices, or one less than
for the second person. Hence, there are n (n — 1) (n — 2) choices
(arrangements or permutations) for the first three. This illustra-
tion brings out the fact that permutations have to do with single
items or groups of items treated as units and that the choice for
each succeeding individual (item or group) is reduced by one.

If we continue until all the x individuals are seated and if ,px
is the number of choices, then

pPx=nn—-1)n—2)(n—38)...(n—x +1) IIL6.1.
This expression may be shortened by multiplying it by
@—x)b—x—1)m—x—2)....321 (m—x)!
b—x)@m—x—1)n—x—2)....821 (n— x)!

It then becomes

n!

nPx I11.6.2.

T (h—x)!
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In the case when x = n, I11.6.1. becomes

Px=n(mn—1)mn—2)(n—3)...321L =n! I11.6.3.
and this is the number of permutations (arrangements) of n things
taken n or all at a time.

Let us now turn to the question of how many different combina-
tions of x things are possible if n things are available. A combina-
tion is an unarranged or unordered set of things, while a permuta-
tion is an arranged or ordered set of things.

Definition: The number of different unordered sets of x (x < n)
things which can be selected from a set of n things is called the
number of combinations of the n things taken x at a time; and is
designated by the symbol nCx.

To find 4Cx it is only necessary to keep in mind that we may
have permutations of groups (or combinations) as well as of in-
dividuals. After all the different groups have been obtained, the
individuals in each group may be arranged to give the total
number of permutations.

The number ppy is thus the number of ways we can make nCx
group choices followed by x! independent individual choices.
That is

nPx = nCx-x!

aPx n!

—_— = I11.6.4.
x! (m—x)!x! 6

hence 2Cx =

. n!

since from IT1.6.2. nPx = E—

Example: Let us find (a) the number of permutations and (b)
the number of combinations of 15 things taken 3 at a time.

(a) From IT1.6.1., ,;p; = 15-14-13 = 2730

(b) From III.6.4., ;;C; = (15!)/(3!) (12!) = 455.

Until now we have dealt with the simple probability of whether
a single event would happen or would not happen. But we are also
interested in finding the probability that two or more events will
occur together.

For an illustration of a compound event, we may toss two
pennies. The number of ways in which two pennies may lie are:
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HH, HT, TH, TT. The probability of two pennies falling heads up
is thus }. Now we recall that the probability of one penny falling
heads up is % and that } -4 = }. This indicates that the probab-
ility of the compound event, two pennies falling heads up, is
under certain conditions the product of the probabilities of the
two separate events, each event being a penny falling heads up.
This is precisely what the situation is if the separate events are
independent.

If it is kept in mind that for every event there is a corresponding
probability p, then the theorem of compound probability follows
immediately from basic principle number two in article I11.6.

II1.7. Theorem of Compound Probability. If the probability that an
event will occur is p, and if after this event has occurred the probability
that a second event will occur is p, then the probability that both
events will occur in the order stated, is Py - Ps.

If the events are independent, as in the case of the pennies, it is
not necessary that they happen in any definite order. The com-
bination a “head and a tail” is the same as a “‘tail and a head”.

Corollary: If the separate elementary events are independent,
the probability of the compound event is the product of the
probabilities of the separate events.

If there are x independent events and if p is the probability of
the occurrence of each independent event, the probability that
the event will occur x times in x trials is p*. If in n trials q is the
probability that the event does not occur, and if x (x < n) is the
number of times the event occurs, then n — x is the number of
times the event does not occur. Clearly, if p* is the probability
that the event will occur x times as specified, q»~* is the probab-
ility that it will not occur the remaining (n — x) times. Hence the
combined probability that in n trials a specific x of the n events
will occur as specified is

p (x) =p=-qr% II1.7.1.
This theorem applies to a set of events as well as to a single event

for the probability for the occurrence of any specific set of x
events is the same as the probability for any other set of x events.
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Consequently, the probability of the event’s occurring exactly x
times without the restriction of its being a specific x is equal to the
product of the probability for any specific x occurrences by the
number of combinations of x sets there are in n events. This value
has been shown to be (II1.6.4.) equal to

Hence, the probability P (x) of the event’s occurring exactly x
times in n trials is

!
P(x) = ———  pxqi-% =,Crpxqr=  IIL7.2.
x! (n—x)!
where x may assume the values 0, 1, 2, ..., n. This is a funda-

mental law in probability, and if we let x take on all integral
values from 0 to n, we obtain the respective probability for each
of the possible and mutually exclusive events.

A more general theorem in which combinations are involved is
known as the Binomial Theorem.

II1.8. The Binomial Theorem (applied to probability). The Binomial
Theorem states that if the probability that an action will take
place in a particular way is p, and the probability that it will not
be so performed is q, then the probability that it will take place

in exactly n,(m — 1), m—2), ... 3, 2, 1, 0 out of n trials is given
by the successive terms of the binomial expansion :

—1
@ +qr=p" +n-priq + Ii(ln—z—) PR ... TI1.8.1.

which is known as the Binomial Distribution.

It will be noted that the generating term is of the form ,Cx
p'q"". For the purpose of illustration, let a coin be tossed
3 times. In this case p = q = }. The probabilities of getting 0, 1,
2, or 8 heads are:

(3) 3 (33 3% (3)°
and these are the successive terms of
(p +9f =p® +3p%q +3pqg* + ¢
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Similarly the probabilities of getting 0, 1, 2, 3, or 4 heads are:
@4 4@ 63 4 @) O
We might represent the possible results of tossing a penny four
times graphically, as shown in Figure ITI.1.

'}

% |
> i
3 4
3 16
a
2t
X

o 1 2 3 4

Number of Trials

Ficore I11.1

GRAPHICAL REPRESENTATION
oF THE PossiBLe RESULTS oF TossiNGg A PENNY

The possibility of each number of heads is represented on the
vertical ordinate. The width of each rectangle is equal to one unit
= Ax. The area of each rectangle expressed in general terms is

2Cx px qox Ax
— an Px qn-x

This means that the area of each rectangle equals the probability
of getting the number of heads corresponding with the mid-point
of its base. The entire area = the probability of getting 0, 1, 2, 3,
or 4 heads = L + & 4+ 5 4 4 L =1, so that the prob-
ability of getting a given number of heads is equal to

Area of rectangle

Area of whole figure
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Expressed mathematically, the probability of getting any
number of heads, x

an px qn—~x
P (X) = Z———————DCX PX qn_x

since ZaCx p*qr—® = 1.

= 5Cx p¥ @2 % I11.8.2.

In the example given p = q = } with the result that the graph
of the distribution is symmetrical. If p is not equal to q the distri-
bution is not symmetrical but skewed. It is also clear that as n is
increased, the area can be accurately represented by a smooth
curve. It is only in the long run that the relative frequency with
which an event happens as specified may be compared to probab-
ility. It is only when a man has large capital that he can play long
enough to take advantage of the odds in his favor.

A quicker and more efficient way of obtaining the probabilities
for an event happening as specified « times out of » trials is by the
use of a recursion formula. As in II1.8.2., let

P(x) = m pxqrx

Then,
n!
x4+ m—x—1)!

Dividing IT1.8.3. by II1.8.2., we get

Px+1)= pxtlqo-x-1 TJI.8.3.

P+l _@—3p II1.8.4.
P (x) x+4+1 ¢

whence, P(x 4+ 1) = (0 —x) B, P (x) II1.8.5.
x+1 q

To obtain the values shown in the tabular form, we proceed as
follows: Let x = 0, then from ITI.8.2 it is found that P (x) = P (0)
= qo. Next, from II1.8.5., we find that where x = 0,

-EP(O)
q

. 2 . qn _— nqn—l P'
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Then, let x = 1 in IT1.8.5., and
n—1
P (2) =T-BP(1)

< q
-1
:?T.B-nqn—lp
q
nn—1) .
o OF

Continuing in this way, all the probabilities of happenings may be
obtained and they are shown in the following table for the different

possibilities.

Table 111.1
BivoMrAL DISTRIBUTION
Number of Probability of
Happenings Happenings
0 et q?
1 e ng?lp
nn—1)
2 T gqi—2p
nn—1)@-2) . .
R Y qP3 p
..................... . i
~X nX
X ceeiiiieeiieaieaaes Ty qv-Xp
I pt

Such a description of happenings is designated a probability
distribution or a relative frequency distribution in the case of a
sample. If each of the probabilities were multiplied by the number
of individuals (number of cases or number of trials), we would have
the corresponding theoretical (absolute) frequency distribution.
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I11.9. Modal Term of Binomial Distribution. The Binomial distri-
bution is analyzed by finding the modal term, the arithmetic mean,
and the variance. To find the modal term we take the generating
term,
n!
—_ X qh—-x
Plx) = x! (n — x)! L

of the binomial distribution and find the value of x such that the
xth term will be a maximum and hence be greater than or equal
to either the (x + 1)th term or the (x — 1)th term. In other words,
the ratio of the xth to the (x < 1)th term or the (x — 1)th term is
equal to or greater than one. Thus

n!

P (x) Pryrpmy R
P(X+1) - n! x+1 gqn-x-1 = tand
T+ o—x—ni* ¢
n!
P (x) Mo T
Px—1) n! =1

~1 qn—-x+1
E—Dim—xtn 2 ¢

Simplifying these two inequalities, we find, respectively, that

x+1 g
- 21 = pn—
a—x 1 orx=pn—q and
— 1
pox -I—)ZlorxSpn—i—p
X q

Now, if % is the modal or mazximum value of x,
pn—q <X <pn+p I11.9.1.

Thus neglecting a proper fraction, pn is the most probable or
modal value. If pn — q and pn - p are integers, then there exist
two equal terms which are larger than all the others. This is the
same as saying that if the chance of n events happening is +, then
in 30 trials it is most likely to happen 10 times.

Examples: (a) What is the greatest number of times the event



80 STATISTICS AND HIGHWAY TRAFFIC ANALYSIS

will happen as specified when there are n = 11 trials and when
p = q = 1. From II1.9.1., we find that X is either 5 or 6.

(b) Ifn = 12trialsand p =q =1, X = 6.
(c) If n = 15 trials and p = L an dq

(d) Ifn—~181:1'iaJlsa,ndp_1 and q =
(¢) Ifn =23 trials and p = { and q =

ml»—t

I

2.
3.
3 or 4.

m]mmlmm[c\
M M b2
l

II1.10. Arithmetic Mean of Binomial Distribution. Let x be the arith-
metic mean (mathematical expectation — probable or expected number
of times the event will happen as specified in n trials under the law
of repeated trials). By definition, the arithmetic x of x is

= n! '
— X n—x
_ gx x!(n—x)!p d
X=—3 I11.10.1.
n!

ZXX! (n — x)!pan_x

But the denominator is the total probability which is equal to 1.
Simplifying,

- nn-1)
X:O.qn+1.nqn—lp+2. 2' qn-—2p +
n—1)n-2
= np (qn—l 4 (n—-1)q"? +___)_2$__)qn—3 P2 +.. )
=np (q + p)*~* =1np (1) = np. II1.10.2.

Ilustrative Example 1: Given p =+ and n = 18, and q =

required to find the mean X.
Substituting in II1.10.2,
x =18 1=
The answer may be interpreted to mean that in the long run the
event will happen one time in 6 trials and therefore in 18 trials we
would expect the number of occurrences to be 3, while the actual
number of occurrences in a single trial maybex=90,1, 2,3, ...,18.

[[28

Tustrative Example 2: Suppose that it has been ascertained from
a traffic count that on the average 30 per cent of the vehicles turn
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left, what is the probability that (a) a specific 3 out of 5 (say the
first 3) vehicles will turn left, (b) any three (exactly 3), out of 5
vehicles will turn left.

(a) In the first case, I11.7.1., p (x) = p* q» = becomes

p (3) = (.3)3 (.7) = .01323 IIT.10.3.
(b) In the second case, IT1.7.2., P(x) = — —— p=qn=%
x!(n—x)!
becomes
5!
P (3) = 5757 (3)° (1) = 1328 II1.10.4.

The answer found in I11,10.3. means that in the long run, 1323 times
out of 100,000, a specific 3 (say the first 3) out of each group of
5 vehicles will turn left. The answer found in IT1.10.4. means that
in the long run, 1323 times out of 10,000, any 3 out of each group
of 5 vehicles will turn left.

IIT.11. Variance of Binomial Distribution. Another important
measure is the arithmetic mean of the squares of the differences
between the number of times the event will happen as specified
and the expected number of times the event will happen as speci-
fied. Recall that in Chapter II in discussing frequency diagrams
we spoke of this as being similar to the square of the radius of -
gyration. This quantity is called the variance. To obtain its value,
if o? is the symbol for variance, then

2“ n!
E (x—np)? = o= <——-_) xqo-x(x—np)? IIL11.1.
—x\x! (n—x)!/ P4
But
E (x —np)2=E (x?) — [E (x)]? ‘ II1.11.2.
Since, we have already found the value of E (x) to be np, it

suffices to obtain the value of E (x?). By the definition of expected
value,

L n!

B )= on x* (x! (n—x)! qun—x)
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—1
= 0.q2 + l.nge-1p + 4 %') qr-2p?

n{n—1)(n—2)

+9 31 g e
3(n—1 —2
=np [q‘“l +2(n—1)qr-2p + (n 2)'(n )qn"3p2+ ]

= 1p [(q +prt+@—1)p {qH +@—2)q>%p

—2@—3)
o1 Qe ipi 4 }]

=ap[1 + (@—1) (p) (q +p)>7
=np [1 4+ (n— 1) p] = np + n? p? — np? II1.11.3.

Substituting the values from ITT.11.3. and II1.10.2 in III.11.2,,
we find
o> =E (x —np)? =E (x!) — [E (x)]* becomes
o? =np -+ n? p? — np* — n? p?
=np-—np? =np (1 —p) =npq I11.11.4.

Tllustrative example: Given p = 1, q = 2, and n = 18. From
II1.11.4. we find that ¢* = 18 (3) (%) = 2.5. This means that in
18 trials we would expect the number of occurrences to differ from
3 by 2.5. In other words, we would expect the actual number of
occurrences to lie between 3 — 2.5 = 0.5 and 3 + 2.5 = 5.5,
namely, between 1 and 5.

In the case of relative frequency or relative number of occur-
rences, if (x/n — p) is the difference between the observed number
of occurrences out of #» and the probability p of occurrence, then
it is not hard to show that

— 2 2
Exn—pp=l®&—0F_o P4 s

III. 12. Size of Sample Required for Stability. At this point it should
be noted that we are thinking of the relative frequencies in many
random samples, and that we are concerned about the degree of
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stability or the degree of dispersion of such a series of relative
frequencies. This is a fundamental problem in statistics. In the
binomial distribution, sometimes called the Bernoulli distribution,
we assume that the underlying probability remains constant from
trial to trial and from sample to sample and that the drawings are
mutually independent. This assumption is implied in so-called
simple sampling.

Returning to Bernoulli’s theorem, IT1.3.1.,let e = qu, (A>1).

In the Bienaymé-Tchebycheff inequality, I11.5.2., let D = qu/n.
Then

P(D) < " becomes P (¢) < ﬁ TI1.12.1

It may be seen from IT1.12.1. that as » tends to infinity, n = P ()
tends toward zero. This proves Bernoulli’s theorem for any dis-
tribution law of probability by the use of Bienaymé-Tchebycheff
criterion as was suggested in IIL5.

In order to get a comparison of the results obtained by articles
TIL.3., TIL.4., ITL5., let ¢ = 0.01, p = 0.1, q =09, A=2}5
= 4.472 and » = 0.05. Substituting these values in I1L.12.1.,

y,—P(e)sBﬂ
(.1)(.9)

P (.01)=0.05< Y

whence n = 18,000.
Againlet ¢=0.05, p=10.1, q =0.9, A =2 /5 = 4.472 and
7 = 0.05. Substituting these values in I11.12.1., we get
Pq
n =P (¢) = 2
(:1) (.9)

=P (.05) = 0.05 < NI

whence n = 718.

Comparing these results with those previously found, it is seen
that they are materially less as was indicated previously. It is
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noted that » is a maximum when p = q =1 for then pq is the
maximum. Hence, it is always safe to take the value of n when P
and q equal } as the minimum value of n. That is, in case the
values of p and q are not known, it is safe to use p = q=%in
determining the size of sample required. In many traffic problems,
p is very small and q very near unity which will require a smaller
sample for stability than if p were equal or nearly equal to q.

Additional means of characterizing the binomial distribution
are moments about the mean. These are:

=0

k2 = DPQ

s = npq (Q —p)

s = 3 g2 02— pan (1 — 6 pq) II1.12.2.

..................................

d
Ux41 = P (IIXP-x_1 + 'd—;x)

where (?\) is the number of combinations of » things taken § at a

time and = is very large.
Other characterizing means are the § coefficients:

(q—p)?
=
npq
1—6
By=3 424 I11.12.3.
npq

B11s & coefficient of skewness, while B, is a coefficient of kurtosis
or “peakedness”.

The theorems of Bernoulli and Cantelli and the Bienaymsé-
Tchebycheff criterion are devoted to obtaining a lower limit to the
probability that the experimental error will not exceed a given
amount.

The binomial distribution and particularly its generating func-
tion P (x) given in IIL.7.2. gives the actual probability of the
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event’s occurring exactly x times in n trials, so that it is possible
to determine the actual probability of the event’s occurring be-
tween any two specified number of times in n trials. This is ac-
complished by adding the respective separate probabilities in-
volved since the events are mutually exclusive.
The function P (x) is given by
!

— Xgh—XxX
P " x!(n—x) !p 4
The function P (x) is a fundamental law of probability for all
positive values of x, integral or fractional. The function is con-
tinuous almost everywhere (i. e. except for negative integers) and
has a unique value for every positive value of x. It is simple enough
to handle if x is an integer. It is quite difficult and cumbersome if
x is not a positive integer.

In practice it is most usable when x is a whole number. Many
times, however, x is not a whole number. It then becomes im-
perative, if possible, to derive from the function given in III1.7.2.
another continuous function which is easier to use and also gives
us the actual probabilities (not lower limits only) that are desired
to be known.

Two such functions are the Normal Distribution and the Poisson
Distribution. We shall now develop and discuss these two func-
tions.

II1.13. The Normal Distribution. The normal distribution is a con-
tinuous approximation to the binomial distribution when = is large
and p and q are not small.

Let us reexamine the generating term P (x) of the binomial dis-
tribution, namely,

P(x)= prqL-*x ITI.13.1.

x!(n—x)!
The graph of this equation is & set of points whose abscissas are x
values and ordinates are the corresponding P (x) values for all
values of x from zero to plus infinity. The function P (x) is con-
tinous almost everywhere (i. e., except for negative integers).
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For our purpose, it is convenient to translate the origin to the
mean or expected value of x. This requires that we substitute
x = x’+np for x in T11.13.1. I then becomes

n!
(x'+ np)! (ng — x')!

Px') = ponx’ g+’ II1.13.2.

If we consider unit intervals only, this probability that the
number of occurrences will lie between np —k and np + k, in-
clusive of end values, is

k
ZeP(x)=P(—k) +P(—k+1)+... +P(0) +P(1)+... +P(k)
I11.13.3

This follows from the fact that the resultant event is obtained by
compounding a set of mutually exclusive events in which case the
resultant probability is the sum of the probabilities of the set of
mutually exclusive events.

To simplify TII.13.2., if the number of trials n is large, it is con-
venient to use Stirling’s asymptotic approximation for n! which is

n!l=nre2(2n)F (1 + = +555m + ...) II1.13.4.
or
n! = )2 e nno+} IIT.13.5.

if the first term of I11.13.4. only is used. If I11.13.5. is used, the
result obtained is equal to the true value divided by a number
having a value between 1 and ;1.

Remembering that =» is large and using III.13.5. for all the
factorials in 111.13.2.,

1 x'\—pn—x'—% x'\—an+x—%
14X (1_— TI1.13.6.
(2 mnpq)? n qn

Transforming ITI.13.6. by taking logarithms of both sides of the
equality,

P (x') =

loge P (x") = — loge (2 nnpq)%— (np 4+ x'+ %) loge ((1 -+ P_};)

— (qn —x + 1) loge (1 - i) IIL.13.7.
: -
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’

Expanding loge (1 + X—) and loge (1 — i) in power series of x’,
Pn qn

I11.13.7. becomes

, , x’ <2
loge [P (x)] [27npq]f = — (np+ X'+ 7) [ — 5:2;2—- ;l—R(x )]
1 il_ _EIZ___ZEI_ ] 13.8
—(qn—x'+43 )[nq 5 nig? S (x) I11.13.8.

To make this expansion valid, it is necessary to assume that n

’ -

is sufficiently large so that %— is sufficiently small. It follows that

R (x’) and S (x') are finite.
Simplifying IT1.13.8., and performing the multiplying opera-
tions indicated, we find that .

(p—q)x’ x? x?
1 ’ f= — — T (x 13.9.
oge[P ()] [2rnpali=—7 "= — 5t = T(x') IIL13.9
The equation II1.13.9. may be written in the form
"9 ’
_TUuw) IL.lo.
2npg n

loge [P (x")] [2 nnpq]t= —

where U (x) is also finite.
Now if n is large enough (in other words, n must be very large)

so that (X—) U (x’) is very small (negligible or within the allow-
n

able error), then ignoring this term, I11.13.10. may be written as

1 —x2
Y=———p2004 I1.13.11.
P (x) (27rnpq)%e I11.13.11

which is called the normal distribution.

It appears that this was first known to DeMoivre in November,
1732. Multiply both sides of the equality II1.13.3. by Ax’, then,
k
ka.P(x’)Ax’=P(—k)Ax’+P(—k+ DA +..... + P (0) Ax’

+ P(1)Ax' + P (k) Ax’
and on the assumption that P (x') is continuous,

1 kX2
M e 2opd g’ 1.13.12.
Lim 2 P(x)Ax @ nnpq)é'I: X IIT.13

Ax'—0 )
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The right hand member of I11.13.12 is known as the probability
tntegral. It gives the probability that a random variable x’ has the
value —k < x' < k.

If P(x’) is discontinuous and the ordinates are at unit intervals,
then in IIT.13.3. there is one more ordinate than intervals of area.
Hence,

k+ %
3 Py ona
X)=—uo-— 2npad x’ imately.  II1.13.13.
2 (2 mnpq)? _kei S X' approximately

The above results summarized lead to the well-known DeMoivre-
Laplace theorem, namely?:

The probability that the difference a'= x— np between the
number of occurrences x and the expected number of occurrences will
not exceed a positive number k is given to a first approzimation by
I11.13.12 and to closer approximation by 111.13.13.

II1.14. Interpretation of the Properties of Normal Distribution. The
special form of the normal distribution as given in ITI.13.11. is re-
stricted to the conditions that n is large and p and q are not small
thus giving a continuous approximation to the binomial distri-
bution.
:EI
Now consider P (x)=———¢%" I11.14.1.
c V 2m

where ¢ is the standard deviation with the restriction that it is
finite such that 0 <6 <k.

The graph of the equation is shown in Figure III.2.

From IIT.14.1., it is seen that the curve is symmetrical with
respect to the y-axis. Likewise the curve has a maximum point at
x = 0, namely at the point whose abscissa is the arithmetic mean.
There are two points of inflection, namely P, and P, each of which
are at a distance ¢ from the arithmetic mean. The curve is asymp-
totic to the x-axis at both plus and minus infinity.

From IIT.14.1. or from tables, it is found that the total area
under the curve is unity, the area between x = — g and x — + 0
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is 0.6827, the area between x = — 2¢ and x = + 20 is 0.9545,
and the area between x = — 3 ¢ and x = + 3 ¢ is 0.9973. If

——E: X—2x°‘dx=}
cV2n: oe 2

then x = 0.67449 ¢ I11.14.2.
which is known as the probable error.

y

4 y=P (x)
'}
4-
3 | ¥
Pl [ el 72 P2

2_
' -
0 > X

¢ 20 c c 20 3G

Ficure I11.2
—x3
GrAPH OF THE EQuaTION P (X) = 2_e§o—'
g b3

As an illustration, consider again the case = 0.05, ¢ =:,0.01.
From the Bienaymé-Tchebycheff inequality, 1 =t = 4.47 2.;N ow,
let p=q= L Then, from ITL.11.5. and IIL.12.1.,

tlﬁ—q e

n

becomes 4.472 V(é) () <0.01
n

whence n = 500
Similarly, if % = 0.05 and ¢ = 0.05
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t I_’Sl < e
n
1\/1
becomes 4,472 1/(1@ < 0.05
n

whence n = 100.
Again, let p =1} and e = 0.01. The value of t such that

2 b _x
V—_—f 2dX.:—‘0.99=1-——7]
P

£2
is 2.58. But n = E%— Hence, solving for n, it is found that n = 166

and if

2 (-3
—— _le 2dx=095=1—m,
V27t s

t=1.96 and n = 97,if ¢ =0.01.

Under certain conditions where p = q, the equation of the con-
tinuous approximation curve is given by

+1
Np» )e" 7 (1 + ’E)Ya‘ II1.14.3.

y=aJeP]."(p—}—l a

where the origin is at the mode.

The question is often raised: How is it known that the distribu-
tion is normal ? A very good answer is: If it can be justified axio-
matically that the arithmetic mean is the most probable value, then
the distribution is normal. This is known as the postulate of the
arithmetic mean. Another way is: If B, =0 and 8, =3 (See
11.25.17. and 11.25.18.), the distribution is normal.

I11.15. Poisson Distribution. This distribution is frequently thought
of as the law of small probabilities or the law of rare events. It
appears to be especially useful in solving many traffic problems
(see Chap. V).
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Consider again the generating term of the binomial expansion,

n!

P (x) = i PR IIL15.1.

x!(n—
the probability that in n trials exactly x of them will take place as
specified, where p is the probability that the event in a single trial
will occur as specified.

Equation II1.15.1. may be written as

nnh—1)n—2)......... n—x +1)

P @)=
111.15.2.

m
Write p = — where m is the number of times a given happening
n

occurs in n trials. Substituting this value of p for p in II1.15.2,,

vo=()(5) ) )G —%)"(j:

Now, hold both x and m fixed and let n approach infinity. Then,
in the limit,

n n—1 n—x -1 m\—x
—=1 = ————— =1, and 1—; =1,

=1, N ,

n n n

m\n
To obtain the limiting value of (1 ——II> we set

T E

n

The limiting value of [(1 — E)Tﬁ] as n approaches
n
infinity is e~1. Hence

Lim [(1 — I_H)E] —e ™, I1L.15.5.
N n

Substituting all the limiting values just found in II1.15.2., we

obtain
X

P(x) = (1) (1) (1)..... 1) %e-m. ) TI1.15.6.
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which may be written as
mxX e m )

III.15.7.
x!

P (x) ==

which is Poisson’s distribution or the Poisson Ewxponential Func-
tion. This function is a continuous approximation to the binomial
distribution when p is small and n is large.

The function is continuous almost everywhere and has a real
value for all values of x except negative integers. For negative
integral values of x, P (x) is not defined. The continuity is obvious
if it is recalled that x! is related to the Gamma Function,® that is:

x! =f°°yx evdy ='x +1) TIL.15.8.
0

The graph of the function is shown in Figure ITI.3. Also tables
(Tables for Biometricians and Statisticians, pp. 122-124) of values
for Py exist.

i

xl
.

m* ¢™

Values of
W

-

I
/’(:\/,mo

A\ ST

/\\\

[ — Y
4 6

%]

o

8 10 1214 16 18 20
Values of x

Ficore II1.3

N

X e-—m

GrarH oF THE FuNoTION P (x) = 1
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From the figure it is seen that for small values of m the curve is
highly skewed and that as the values of m increase the curve be-
comes more symmetrical.

In all cases, p must be small and » must be large, but small
values of m as well as large values of m are possible under these
conditions. It is also quite important to note that as m becomes
larger, the agreement between III.15.7. and II1.13.11. becomes
closer.

II1.16. The Sum of the Terms of the Poisson Distribution. Since each
term is the probability for the event’s happening x times, the sum of
the probabilities for each of these possibilities should equal unity
because some one of the possibilities is certain to take place. Letting
x take successively the values 0, 1, 2, ...., the sum of the re-
spective terms is

>ym*e™ mle™ me ™ ml ™

zxx!"oz+1z+2!+ """

0

m m? 8

m m
=€ (1 +'1—!+-§-!' +§ + ..... ) III.16.1.

The series in parentheses has the value e™. Hence

®_ mEe~D

2x x!

II1.17. The Arithmetic Mean of Poisson Distribution. If X is the
arithmetic mean number of happenings, then

=e P =el= 1 IIT.16.2.

— o m¥e ™
mle 2 me™™ ! m2e ™ mie ™ 5
of Ottt 2t g8t
= me -l-I—! +'§' +’?—"!‘+ .....

= me~"e™ = m. I11.17.1.
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II1.18. The Variance of Poisson Distribution. Since variance is the
expected value of the squares of the measurements minus the
square of the expected value of the measurements, we will first
obtain the expected value of the squares of the measurements. It
is given by,

©

m*e T

B =3,
- !
mle ™ 0 me ™ 1 m2e ™ 4 mde ™ 9
_0!+1z+2!+3!+ """
_ ml 2m 3 m?
=me 1+—1—'—+—2T‘+ .....

=me ™ [e® + me™ } =m -+ m? I11.18.1.

But the square of the expected value is m? Hence

o =E (x*) — [E (x)P
=m+4+m:—m?=m I1I.18.2.
Ezample 1. There occurred at a certain highway intersection 6
accidents during the passing of 10,000 vehicles. In this case p =
0.0006 and n = 10000. Suppose we wish to know the probability

that the number of accidents lies between 3 and 9 per 10000 ve-
hicles. Making use of I11.13.13., we find that

1 k -+ v 3 .
P = — -l ' _— X ,
(x) (2 =npq) %ike_ﬂ; 9928 dx' = 0.02654 f_e;; 5928 dx

From tables of the normal probability function it is found that if
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then

3%
s
0.02654 fem dx’=— 0.847
the desired probability.

To calculate the probability from the Poisson distribution with
m = 6, we add the probabilities for the event’s happening 3, 4, 5,
6, 7, 8, and 9 times as taken from the Poisson tables!® for indi-
vidual terms:

Happenings Probability
3. .089235
4 .133853
5 160623
6 160623
7 137677
8 103258
9 .068838

Total Probability .854107

We may also use the table for cumulated terms and substract
the probability for 10 or more happenings from the probability for
3 or more happenings with m = 6.

Happenings  Probability
3 or more .938031
10 or more .083924

.854107 =probability of 3 to 9.

Again if the binomial distribution is used, the value of the de-
sired probability is 0.854.

These results show that there is little difference between the use
of the so-called normal distribution and the Poisson exponential
function, while the Poisson exponential function is a better
approximation than the Bernoulli distribution for rare events,
that is events with small probability.

Example 2. For a given period of time, at a certain point on a high-
way, it is observed that on the average three heavy trucks per
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100 vehicles pass the point. A subsequent sample contains six
heavy trucks per 100 vehicles. Using the Poisson exponential dis-
tribution, compute the probabilities of 0, 1, 2, 3, 4, 5, 6, 7, and 8
heavy trucks per 100 vehicles using m = np = 3.

The probability distribution is shown in Table III.2.

Table ITI.2.
X Px X PX
0 .0498 b .1008
1 .1494 6 .0504
2 .2240 7 .0216
3 .2240 8 .0081
4 .1680

This table shows that (1) the probability of obtaining one heavy
truck in a sample of 100 vehicles is 0.1494; (2) the probability of
getting more than three heavy trucks is .5768; (3) the probability
of getting at least six heavy trucks is .3080.

The probability of six or less than six, being .9664 with a level
of significance of 1 — .9664 = .0336, indicates that on a 5 per cent
level we have grounds to reject the hypothesis that this number
of heavy trucks is not significant.

In obtaining the size of the sample so that the error from the
arithmetic mean is one heavy truck, namely, that the number of
heavy trucks is between 2 and 4, the reasoning is:

The standard deviation is

¢ =m =np =n (.03)

and since e = 1, it is clear that
e =tm

becomes 1 = (Y/,) n (.03)

which gives n = 100

and the sum of the probabilities, namely
.2240 4 22404 .1680 = .6160, the measure of certainty.

Example 3. Required to find the probability of n cars appearing
within an interval of time r beginning at the instant t. Then
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p (n, r, t), the probability of n cars within an interval of time r be-
ginning at the instant t, is given by
K"e ™

n!

p(m,r,t) =

where K is the expected number of cars in the interval.

111.19. Dispersion and Variance. Thus far it has been assumed
that the relative frequency (sample) or the probability (universe)
that an event will happen as specified remains constant through-
out the entire field of observation. There are many cases where
the underlying probability (relative frequency) does not remain
constant. This indicates that it is necessary that the statistician
obtain all the available knowledge from the data by properly
classifying them into subsets for analysis and comparison. In other
words, it is valuable to know whether the relative frequencies or
probabilities vary from case to case or from set to set.

Consider the following: Given N independent quantities X, X,
..., Xy such that the mean or expected value E (X;) of X is ay
and the mean or expected value E (X of X is Aj. Then, if

— X, +X+... +X
X(1+z+ + Ax

= N )anda:(al+az+...+an)/N,it
has been shown (“Probability,” by J. L. Coolidge, Oxford Press,
1925, p. 67) that

- N B N—1X N
— 2 — ——— —a.2 . 2
E _Zi(Xl X)] N Z‘(Ai ag) + Zi(ai a)? TIL.19.1.
If the observations are from homogeneous data, a; = a, A; = A,
In such a case, 1I1.19.1., reduces to

S ] = YTl N —a) = (N—1)er  IIL192
EZJX,-X) =—5N@A—a)=( —1)o .19.2.
since

?=E (X2) —[EX)]P=A—ak
The relationship given in IT1.19.2. reduces to

*=E [%1 (Xy — X)®/(N — 1)] I11.19.3.
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Suppose now that a set N =1k independent items has been
observed and classified in some relevant manner, say, in 1 rows of
k items each as shown in Table IT1.3.

Table I11.3.

Xy Xpgy oeees Xgo venny Xy | T X
Xopy Kooy veeer Koy evvey X | Ty, X,

Xns X » Xy » Xie | T1. Xy
T.,, T., ,T.], s T | T
Xy Xop, , Xy, , X X

In the table, T;. is the total and X;. is the arithmetic mean of
the ith row; T.; is the total and X.; is the arithmetic mean of the

jth column; and T is the total and X is the arithmetic mean of the
whole sample of N = 1k items.

x 1
Let E (Xy) = ay; E(X%)) = Ay; %j agy = kay; ?‘1 ay = la;
1 _ _ 0k _ _
§1X1 = IX, ?] Xj = kX,
Then, by III.19.1., for the ith row
k _ k —1 k k
E [2,@“ - Xm] =5 2 By a) + 3 (e — o

II1.19.4.
Summing II.19.4. for all the 1 rows, it is found that

k

1 k _ _ 1
B [212 K= Xi)z] = k—klzi ZJ(AL‘I — ayy)?
L'r 1 et

1 k
—I.- Zi Z] (a,“ —_— a.vl)z III.19.5»
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Since E (}_ii_) = a4, we note that
EX.—ap=EX2)—2aE Xy +at=E(X.?)—a? or
E(X12) = E (X;. — a1)? + ag? II1.19.6.
Applying II1.19.1. to X;. (i=1,2,...,1),

R R
E lzi(XL— X)2] = 1—1—1 21 [B(X3)—af] +Z (ag — a)?

III.19.7.
But
_ _ 1k
E(Xt)—al=E(X;.—a)= ]?211 (A — ay)
so that
Lo 2] 1-1d & 1
E[Zi(XL_XP] T | L] +211 (ag—a)?
I11.19.8.
Applying II1.19.1. to the N = Ik values, we get
1 & 1k
X 2
E [21 1 EIJ(X” — X)2] —]k_ 2 zj(An — 3:”)
1k
+ 21 . Zj (agy—a)? II1.19.9.

By starting with the jth column and proceeding as in I11.19.5.,
I11.19.6., and I11.19.7., it is found that

_ k 1
[2 E (Xy—X 1)2] =1 21 Zi(Au — afy)
k 1
+ 21 j 21 (a1 — by)? II1.19.10.

and

k —— —
E[z (X.,—X)2]=
1

1k k
T, 2, Ay —ah) + ) (by—a)
1 1 1

II1.19.11.
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If the N =1k values are statistically homogeneous or are all
observations from the same population, then Ay = A, ayy = a,
=b; = a so that III.19.5., II1.19.8., II1.19.9., and III.19.10.,
and II1.19.11., become, respectively
-1

E 2 E(Xi,_xi)z] - Ik(A—az)—l(k—l) (A — a?)

I11.19.12.

1—1 1—1
Xy, — ]—_— .lk(A—aF)z——(A—aF) IIT.19.13.

1 1k2

1
2
r 1k _
. 2| — a2 - — . a2
E{ZiZJX“ X)] Tk (A—a?) = (k—1) (A—a?)
IIT.19.14.
r k1 1—
X el =—= —a?) =k(l— —
E{Z gixlj ,)] = lk(A a?) = k(l 1) (A— a?)
II1.19.15.
S &K% =5 e = 4w 1
EZ’( 1= XP| = -k (A—a?)=——(A—a?) IIL19.16.
To summarize, it has been shown that in a statistically homo-
geneous set of N =1k observations arranged in 1 rows and k
columns, the following estimates of variance (or the following
mean sums of squares) all have the same expected value:

)

1 k _ I k —
22 (Xy—X)? 2y 2y (Xyy — X,
N T @ e
I11.19.17.
k1 _ ) _
2% Xy —X )2 k 2y (X —X)?
® —rai—n A

k. —
15 (X, —Xp

Any significant differences between the estimates given in
III.19.17. indicate lack of homogeneity of the set of items. The
tests for this will be described in Chapter IV.
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Let us now consider several special cases. Let py be the prob-
ability that X has the value Xj; and let p; be the average probability
for the ith set, then

x 1
kpi=2Zjpy; lp=Zim
and it can be shown by the use of III.19.1. that

1k _ 1 k 1
%1 le (Xyy— X)2 =1kpq — 2131 ?1 (py—p1)? + (k2—Kk) ?1 (p1—p)?
I11.19.18.

The special cases are:
(1) Bernoulli series: py = py = p. Here I11.19.18 becomes

1 X _
2 2y (Xy—X)? = lkpq

(2) Leais series: py=p;; p15= p. Here II1.19.18. becomes
1 k _ 1

3 3 (Xy — X0 = lkpg + (k2 —K) 2 (pr — p)*

(3) Poisson series: py==pi; p1 = p. Here TI1.19.18. becomes
1 &

1k —
%1 %) (Xyy—X)? = lkpg — 24 Xy (Py —P)°
The special cases expressed verbally are:

(1) Bernoulli series: The underlying probability p is constant from
trial to trial and set to set or is constant throughout the whole
field of observation and we have statistical homogeneity.

(2) Lexis series: The probability is constant from trial to trial
within a set but varies from set to set and we do not have sta-
tistical homogeneity.

(3) Poisson series: The probability varies from trial to trial within
a set of k trials, but the several probabilities for one set of k trials
are identical to those of every other of 1 sets of k trials and we do
not have homogeneity.

Illustrations of such series exist in the study of traffic on a given
route at 1 different crossings at k different times with a total of
N = 1k observations.
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II1.20. The Multinomial Distribution: Let samples of size n be
drawn from a specified universe with each sample divided into
the k& classes or cells with the distribution random among these
classes or cells.

The probability, P, that there are f,, individuals in the first cell,
fys in the second cell, and so forth, is

P=mxforgloz | Ty 0k AT ) I11.20.1.
where m, is the probability that an individual falls in the first class
or cell, =, the probability that it falls in the second cell, and so
forth; and

n!
fo 1 f! oot for !
is the number of combinations of n things taken f; of one kind,
fy, of another kind, f;, of the k-th kind.

To illustrate: At an intersection point it has been determined
that the probability of turning left is 2, of going straight ahead is
1, and of turning right is 5+ Of 6 vehicles, what is the probability
that one will turn left, two will go straight ahead, and 3 will turn
right ?

Solution: Here = 2 =04, 7= +=0.5, and 7; = +E=0.L
Also fy, = 1,f, =2, fos = 3. Substituting these values in I11.20.1,,
112! 3!
= 0.0001 (60) = 0.006

which means that 6 times in 1000 the event will happen as speci-
fied.

Let us now assume that each fy (i=12,...,k)islarge. Then,
by the use of Stirling’s asymptotic approximation to the factorials
in H1.20.1., it is found that

P = (0.4)! (0.5)2 (0.1)3

n*+igm Vﬂ
II1.20.2.

[Fan g ¢ 1 £
= 7':101 71202 e e n-kOk

where the symbol = means “approximately equal to”.
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k

Since %1 f,; = n, it is not hard to show that
01+ 4 0241 fok+4
p= (’ﬁ) ’ (n—“%) T (ni") T11.20.3.
f01 f02 f()k
Now, let fyy = nm; i = 1, 2, ., k) and
i, — f, —f
X, = _la— 4 II1.20.4.
VnTri fti
fori=12,..... s k.

Substituting from I11.20.4 in I111.20.3, and transforming to
logarithms, it is found that

k f
log P—log K = 2 {(f01 +1) 1ogf—tf}

= (f +Plog———=
2‘ ( o 5 fti + Xivfti

X,
=— 2 (fti +34+Xy Vfﬁ) log (1 +Vr) I1I.20.5.
t1

It is next assumed that fy and f,; for each ¢ are of the same order
of magnitude. It then follows that X; will be small compared with
fy1. Expanding the logarithm in ITI.20.5 into a series, we have, to

first order,

k Xy . X%
log P —logC= — X, (fu + & + Xi}iu) V& i TI1.20.6.

k
= — 23 X3 + X
k k
But %i (Xi Vf_ti) = %i (fOi —_ fti) =n—n=20,

Hence

K
log P —log C= ——%?in and

p_o o I11.20.7.

From II1.20.7, it is clear that P varies directly as the sum of %
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normal independent variates of unit variance which are subject to
k

the single constraint that ?1 (x4 Vf—u) =0,

This is precisely x* (Chi-square) as will be seen in Chapter IV.

H o xa g o —fup? I11.20.8

ence, p=d =3 G 20.8.
and is the probability of the sum of the squares of (k — 1) in-
dependent normal variates each of unit variance.

The criterion given in I1I.20.8 is known as the Chi-square test of
goodness of fit and is useful in testing the hypothesis that a sample
at hand came from a universe of specified type.

The algebraic form of the distribution of ¥2 is

1

=l k-1
2
=T

Using the table on page 220 for this function an application is
shown in Chapter V, page 163.

Thus far the underlying probability of success has been assumed
constant. Suppose now that the probability of success is not con-
stant, but depends on what has previously happened such as the
case of finding r white balls from an urn that contains np white
balls and ng black balls when s balls are drawn one at a time from
the urn without replacements.

The solution of such a situation is given by the Hypergeometric
Distribution.

Py = e (P E=8 7909

II1. 21. Hypergeometric Distribution : Consider an urn in which there

-are np white balls and nq black balls. Draw s balls one at a time
without replacements. The probability, P,, that r (r = 0,1, 2, . . ., s)
of the s balls are white is

(mp)! (nq)!
_rop—n! 5—r)!(ngq—s +1)!

P:y.—

r r

n!
s! (n—s)!
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- (np)! (ng)! s! (n—s)! TIT.21.1.
(mp—r1)! (ng—s + 1)l nlr! (s—r)!

To idllustrate: Consider the case of 100 vehicles approaching an
intersection of which np = 30 are trucks and nq == 70 are not
trucks. Consider any s = 5 of these vehicles one at a time. The
probability, P, = P, that 3 of the 5 vehicles are trucks is

30! 70! 5! 95!
™ 271 68! 100! 3! 2!
which means that 117 times out of 1000 sets of 5 vehicles the prob-
ability is that 3 vehicles out of 5 will be trucks.
Now, let

= 0.117

d
x=r+3% and y=(y; +¥:+1)/2 and (d—g) = Y1 —Y:-
x,5)

Then, :
—ng—1— 2

by _stmps—ng—l-r@+2) g,

dx 4 1) r+1)(r+14+nqg—s)

From y = (y, + ¥;41)/2, it is found that

nps -+nq+1—s—r(nq + 2—np —2s) 4 212

Yy=3V: O ¥ P ) IIT.21.3.
Replacing r by x — 4, IT1.21.3. becomes
(1) (dy) 28 +2nps—2nq—2—(2x—1)(n +2)
3_7 dx " nps +nq +1—s +(x—4) (nq +2—np—28) +2(x—%)?
ITT.21.4.

The equation given in III.21.4. is the equation of the system of
curves which are continuous approximations to the law of prob-
ability given in ITI.21.1.

The curves are usually known as the Pearson system of fre-
quency curves which are the particular solutions of the differential
equation I1T.21.4.

The equation III.21.4., may be written in the form
(d y(x +a)

y
— = III.21.5.
dx) by + by x + b,x2
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which has 12 particular solutions or 12 specific types of curves
dependent upon the values of the constants.l!

The moments about the arithmetic mean of the distribution
I11.21.1., are

__8pq (n—s)
27 n—1
_spq(g—p)(n—s8)(n—25s)
ts = (o—1)(n—2) II1.21.6.
spq (n—s)

g = )@=z 3 [n (n+41)—6s(n—s)+3pq {n%(s~2)—ns?+ 63 (n-s)}]
Npryy = {(1+EN—E} [us— {np +5(q—Pp)}t +{spq (0 —5)p}]

IIT.21.9.
where E is an operator and means that

By, =pt=0,1,2,....).
The maximum term of III.21.1. is approximately®

V n__ 111.21.8.
2 pgs (n — s)

If in I11.21.6. and ITI.21.7., n — o , the respective moments be-
come the moments of the binomial distribution which shows that the
binomial or Bernoulli distribution is the limiting case (or the case of
a large or infinite universe) of the hyper-geometric distribution (or
the case of a finite universe).

IT1. 22. Correlations: The theory of correlation is devoted to the en-
deavor of finding laws of relationship (dependence) between two
or more variables. Suppose a group of individuals is measured in
regard to a certain attribute. It is found that the individuals differ
in their measurements. It is desired to explain these differences in
terms of factors on which this attribute is dependent and to obtain
laws connecting the attribute with one or more such factors. The
better the law of connection explains the variability in the attribute
in question, the higher is the correlation.

To illustrate: One may wish to know whether the height of an in-
dividual can be explained or measured by the weight of an in-
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dividual. In other words, are tall people heavy and short people
not heavy. It is well known that weight alone does not measure
height or explain the difference in the height of individuals.
In this instance there are more factors than the one factor weight.

There are three main types of correlation: simple correlation,
multiple correlation, and partial correlation. These will now be devel-
oped and discussed in the order named.

The Correlation Coefficient r-Linear Regression or Linear Trend.
The regression or trend line is necessarily the best fitting line in the
sense of least squares. The line may be curved or straight. To start
with, let it be assumed that the regression (trend) line is a straight
line. The equation of this line is

y =mx +b II1.22.1.

The values of m and b must be determined and they are, respect-
ively, the slope and y-intercept of the line. The x and y values are
observed in pairs and they are the coordinates of any point on the
line. The formula III.22.1. describes an infinite number of lines,
each with its m as well asits b. No two different lines have the same
m as well as the same b. If the lines are parallel, they have the same
m but different b’s. If the lines pass through the same poiat on the
y-axis, they have the same b but different m’s. We assume that
any one of the possible lines has the same weight as any other one
in arriving at a particular line, namely, the line that fits the data
best in the theory of Least Squares. The Principle of Least Squares,
used to determine the line of best fit, states that the line of best fit
for a series of values is a line such that the sum of the squares of
the vertical distances from it will be a minimum. There can ob-
viously be only one line having this qualification. Another such
line exists for the horizontal distances. However, the one for ver-
tical distances is sufficient for most practical purposes.

In Figure II1.4., suppose that the line RR’ is the straight line
of best fit for the plotted points (scatter diagram) shown, and that
its equation is

y=mx +b I11.22.1.
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The y-distance, namely, y’, of any point (xj, y1) from this line
is equal to

y1 — (mxy + b) I11.22.2.
y
3
Xy
" ‘)M R
'.. ..‘-:.'..c:".' >mxi+b
R/ L] . L ]
' )
o > X
Ficuvre I1I1.4

ILLUsSTRATION OF PriNcirLE oF LEAST SQUARES

The sum of these distances squared must be a minimum. Sym-
bolically,

& =3, (mx; + b —yo)? T11.22.3,
1

is to be a minimum. This necessitates that

% =tz Zi (mxy +b—yy) =0 IIL22.4.
and

- +2 i Xy (mx; +b—y;) =0 IIL22.5.

om —i1

From I11.22.4.:

n n
%1 yi=nb 4+ m 211 X1 II1.22.6.
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where n equals the number of cases or number of points. From
IIT.22.5.:

n

n n
Zi X1yi = b Ei Xi +m 21 x;2 I11.22.7.
1 1 1

Equations I11.22.6 and II1.22.7 are so-called “normal” equa-
tions for finding the least-square straight line. The two equations
can be solved simultaneously to find the unknowns m and b. These
two equations are all that are needed to determine the equation
of the line of best fit. This line gives the relationship between the
two variables x and y.

The procedure can be illustrated by an example. The required
calculations can be done quite rapidly with tables and a calculating
machine,

Ezxample: Given the associated pairs of values for x and y:
x: 3, 5,8, 12, 17, 23, 30
y: 1,2, 6, 23, 40, 50, 60
Using these values in equations IT1.22.6 and III.22.7, it is found
that
182=17b 4+ 98 m
3967 =98 Db 4 1960 m

Solving these equations for b and m, we find that m = 2.41 and
b = — 7.78 whence

y=241x—17.78 II1.22.8.
is the equation of the best fitting straight line. From II1.22.6
mx +b—y =0 I11.22.9.

The equation III.22.9. expresses the fact that the linear function
(straight line) passes through the point whose coordinates are
& 7).

Now measure all the x’s and y’s from their respective means as
origin and replace every x by its deviation x’ from %, and y by its
deviation y’ from y. Then III.22.9. becomes, since b now is zero,

y' = mx’ I1T1.22.10.
and ITI1.22.7 becomes

n n
’ ’
mzlhxiz——zlixmﬁ =0
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from which
n
ixiyt g
m=“n——=*2§=22 I11.22.11.
Sixg U0 %
Tt follows that
’__ g ’
y= o X
whence
Vx— Y= % (x—x) TI1.22.12.
G.

X
Tt is important to note that yx is the computed value of y for a
given x from the equation of the least-square line. For the line to
be a regression (trend) line, it is necessary that yy is thearithmetic
mean (or close to being so) of the values of y associated with a
given value of x.

Similarly
T,—X= G—I; y—73) T11.22.13.
y

The coefficient p/c2 gives the deviation in y from the mean y cor-
responding to unit deviation in x from the mean x, for when
x —X = 1, yx — y = pfo2. Likewise, p/c% gives the deviation in
x from the mean x corresponding to unit deviation in y from the
mean y.

But, in general, p/o?= p/ci. This demands the necessity of
altering the unit of measure so that unit change in x and y are of
the same magnitude. Then

=y _ P (X - X) TI1.22.14.
oy Ox Oy \ Ox
and y—x_ P (y_—> TI1.22.15.
Cx Ox Oy Oy
Next, write
P
=7

Ox Oy
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the coefficient of correlation. Hence

Fr—y =12 (x—3) TIT.22.16.
Ox
and
Xy—E=r12(y—7) II1.22.17.
Oy

which are the regression (trend) lines. The numbers r Y and ¢
Ox Oy

are called the coefficients of regression or of the trend.
Consider

— Oy - Gy
yYx—y=r—(x—x) or y'=r—
Ox Ox

x’,
Then

n o 2
Y _.
d = E:l Y'i—l'—-X1>
1 Ox
n

G n 62 n
¥
> V=213 xyy 41220 3
1 1 Ox 1 i G 1 1
2

=ne%—2r 3’(nrcrycxx) +r2&(no-2x)
Ox 0-2X

=no? (1 —r12) II1.22.18.

I

Since d being the sum of squares is positive, we have
ne% (1—r1%) >0 and
—l<rg1 I1T1.22.19.

and
r =4 1 when y/, = |Z
Xi Oox
Now
n
np =21x’1y’1 and X1=x1—X;y 1=y —y.
1
Hence

n n

np =21(X1—§) (yi—y) =21(X1Y1)—n§5’-

1 1
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Hence
n
?1 uyt
= —XvV.
p o y
But
r = p
Ox Oy
Hence
n n
§1X1Y1 - §1X1Y1 L
—_ —X
o Xy n y
I = =
Ox Oy > %2 S
%1 Xy 3 ?1 ¥y B
—(x)? — ()P
n n

n _ _ n n

X=X (—y) Six’'y” Tixy

= =21 =1 111.22.20.
11 ox Oy n n ¢x Oy

From this relation, it is fairly clear that r may be considered as
the cosine of the angle between two vectors in Euclidean n space.
Again, from this fact, it follows that —1 <r < L Also, r is the
arithmetic mean of the products of the deviations of the corres-
ponding values from the respective arithmetic means when mea-
sured in standard deviation units; also, r is sometimes called the
product-moment coefficient.

The formulas useful in finding the value of the coefficient of cor-
relation are as follows:

(1) If the variables are in original units with respect to their
natural origin, then

n
2 XYy
— XY TIL. 22. 21.
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(2) If the variables are referred to a class mid-point as an origin
and in terms of the class interval as a unit, then

n

21X Y1

1

a XY II1.22.22.

T =
Ox Oy
These formulas are readily obtained algebraically from ITI. 22. 20.

To interpret r, it is necessary to use r2 which is called the deter-
mining coefficient.

If 1, say, equals 0.70, we find that r? = 0.49 which means that
49 per cent of the variability in the y-values is determined or
explained by the potential determining or measuring factor x and
the linear theory connecting y with x. In other words, the theory
used or tested is but 49 per cent efficient as an estimator or
forecasting or predicting theory.

IIT. 23. Basic theory of correlation. To explain the Basic Theory of
Correlation let us suppose that we have given n pairs of values for
the variables x and y. The problem is to determine the nature
and degree of the dependence between the x values and their
corresponding y values.

To determine the amount of interdependence that exists be-
tween the pairs of variables it is convenient to represent them by
points in a two dimensional Euclidean manifold (scatter diagram).
To facilitate a description of the dependence we partition the data
into classes. This is accomplished by selecting class intervals of size
dx. We recall that the set of y values associated with a given value
of x on an interval of size dx is called an x array of y’s. If it is de-
sired to describe the behavior of the expected values of the y val-
ues associated with the x values, it is necessary to find the equation
of the curve y = f (x) that passes through these points. This curve
is known as the estimate of the true regression curve. The limiting
curve that is approached as dx tends toward zero is the true
regression curve (trend) of y on x and is actually the locus of the
arithmetic mean of arrays of y values of the theoretical distribu-
tion as dx tends toward zero. The description of the theoretical
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law of behavior appertaining to the arrangement of y is the solu-
tion of the problem of statistical dependence (regression or trend
analysis) of y on z.

To illustrate: Consider the related value of minimum spacing,
center to center in feet, with speed in miles per hour.

Table III.4. is a correlation table which shows numerically as
well as graphically the two-way distribution connecting minimum
spacing, center to center in feet with speed in miles per hour as
found by actual observation. The first question to be answered is:
How dependent upon the speed of a vehicle is the minimum
spacing ? The answer to this question is found in interpreting the
value of the determining coefficient which is the square of the cor-
relation coefficient.

Substituting in IT1.22.22 the required values from Table III..,4
it is found that

Z(xy)
n

Xy
h —
Ox Gy

becomes

47440 [— 3321 (——9849)
1336 1336 1336

V5s771 <— 3321 2lﬁ13049 —9849)2
1336 1336 1336 1336
35.509 — (— 2.486) (— 7.372)

" )/44.090— 6.180 /54.618 — 54.346

35509 — 18.327 17.182
T (6.149) (5.502)  33.832

= 0.5079 = 0.51 I11.23.1.

This result means that (0.5079)2 = 0.2580 = .26 = 26 per cent
of the variability in minimum spacing is explained by or dependent
upon the speed of the vehicle and the assumed linear connection
between spacing and speed. In other words, it appears that speed is
an unimportant or minor factor for determining minimum spacing.
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This means that either there are several other factors which to-
gether would explain 74 per cent of the variability or that there
exists a possible single other factor or that the relationship is not
linear. Of these, it appears that the former is the most likely.

A second question that needs to be answered is: What is the
equation of the linear law of relationship which is useful to predict
the expected minimum spacing when the speed is known.

To answer this, it is necessary to use the regression equation
J11.22.16, namely:

— Gy —_
yx—y =T— (X—X)
O;

X
Substituting the values indicated by the use of Table IIT.4. and
II1.23.1, it is found that

_ 22.008
Fx— 47.0 = 0.508 ——— (x — 22.0) I11.23.2.
12.300

whence
¥x = 0.909 x -+ 27.0

The graph of this equation is shown in Figure II1.3. To illustrate
the use of II1.23.2, suppose it is desired to know the minimum
spacing in feet if the speed is, say, 30 miles per hour. To answer
this question, substitute 30.0 for x in equation ITI.23.2, whence
the minimum spacing yx is found to be 54.3 feet. This means that
the expected minimum spacing center to center in feet or on the
average the minimum spacing center to center in feet is 54.3 feet
when the speed is 30.0 miles per hour.

A very important question now to be answered is: How typical
or reliable is the expected minimum spacing of 54.3 feet. This
question will be answered in article I11.25.

111. 24. Coefficient of Regression: Consider
n
f= §1nx1 (Yng, — mx1 — b)?
For f to be minimum

of
=0 and — =0. IIT,.24.1.
om b
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From equations 111.24.1.,

n n
%1 Dy, Ynxi Xy ?1 Ny, X3 Ynxlln

m=— Y
%i Nx, X? %1 DNy, X%/n
n
2yl g4 oy oy
I T R

II1. 25. Standard Deviation of Arrays:

Consider
2 n G 2
nSy = Zi (Y1 —7T —S,Xl)
1 Oox
n Oy B GS% n
= 2 __ — 2 . 2
?1}’1 2r . 21-‘41 (y1xy) + 1 oF §1X1
=no;— 2nr?6? + nr¢?
=n c?, (1—1r2)
Hence:
82 =0, (1—12) I11.25.1.

Sy may be regarded as a sort of average value of the standard
deviations of the arrays of y’s and is sometimes called the root-
mean-square error of estimate of y, or more briefly, the standard
error of estimate of y. The factor (1 —12)t is called the coefficient
of alienation or the measure of the failure to improve the estimate
of y from the knowledge of correlation.

If 8, is regarded as a function of x, say § (x), the curve

y=8(x)o,
is called the scedastic curve. Its ordinates measure the scatter in
the arrays of y’s in comparison to the scatter of all the ys. If S (x)
is a constant, the regression system of y on x is called a homosced-
astic system. If S (x) is not a constant, the system is said to be
heteroscedastic. For a homoscedastic system with linear regression,

8y =0, (1— %) is the standard deviation of each erray of y’s.
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Similarly, for the dispersion of x on y, we have S,zI =o% (1 —r12).
Going back to the spacing speed illustration given in article IT1.22
where it was found that the expected spacing is 54.3 feet when the
speed is 30.0 miles per hour. To determine the dependability of the
value found for spacing, it is necessary to obtain its standard
error or itg Imeasure of variability. This is given by IIL.25.1,
namely: if Sy is the variance of the expected values for spacing,
then .

Sy = Oy (1 — 1'2).
Substituting the values for o2y and r2 found earlier in this chapter,
we find that

St = 484.35 (1 — .2580)

= 359.39

whence Sy, =19.0

This means that on the average, when the speed is 30.0 miles
per hour, the spacing differs from the expected spacing of 54.3
feet by 19.0 feet. In other words, the probable or expected spacing
lies between 54,3 — 19.0 = 35.3 feet, and 54.3 + 19.0 = 73.3 feet
when the speed is 30.0 miles per hour. It is fairly obvious that the
ability to predict the spacing knowing the speed is very poor and
of very little practical value.

II1. 26. Correlation Ratio: Non-Linear Regression: From IIL.25. it
may be seen that
2 =1—8s, I11.26.1.

If S, =0, r=1 and all the dots on the scatter diagram fall

exactly on the line of regression y = r 2, If 8y =0y, r=0 and
°'x

the regression line is of no aid in predicting y from an assigned x.

Now, let S; be the mean square of the deviations from the means
of ,ATTYS. Then SZ = S when the regression is linear and
S’y + S when the regression is not linear. This fact suggests the
use of

2 ] II1.26.2.



118 STATISTICS AND HIGHWAY TRAFFIC ANALYSIS

where vyx is the correlation ratio of y on x and S;z is the mean
square of the deviations from the means of arrays whether these
means are near to or far from the proposed line of regression. For
linear regression of y on x, we have n%x =12 Similarly for x on y,

we have
2

x I1T.26.3.

(72]

2 — 1 —
‘nxy’—‘

ey

To illustrate the finding of the value of correlation ratio which
actually is the true measure of correlation, the procedure is to find
nlyx from equation III.26.2. where
2
S
2 v
Nx=1——+
o
As was explained, (S})?is the mean square of the deviations from

the means of arrays, namely

fedfy 824 ..., +f;sf+...+fisi

n

IIT.26.4.

where f; is the frequency of the ith vertical array — the array when
x has the value x; and s} is the variance of the itharray.From
I11.26.1., it is clear that f; s? is actually the sum of the squares of
the deviations of the values for the ith array of y’s fromthe arith-
metic mean of the ith array of y’s.

Making use of Table III.4., it is found that, beginning with the
first array of y’s, namely, the array of y’s when x = 0.95,thenthe

second array when x = 2.95 and so on. . .,

f, sf = f, 85 =

2 (40.5 — 23.1)% + 1 (44.5 — 27.0)2 +
1(36.5 — 23.1)2 + 3 (40.5 — 27.0)2 +
4 (28.5 — 23.1)% + 4 (36.5 — 27.02 +
19 (24.5 — 23.1)2 + 6 (32.5 — 27.0)2 +
23 (20.5 — 23.1)% + 22 (28.5 — 27.02 +
6 (16.5 — 23.1) 24 (24.5 — 27.0)2 +
= 1355.9 13 (20.5 — 27.0* +

2 (16.5 — 27.0)2
= 2364.7
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Similarly, it is found that

f, s? =4108.8
f, s = 52725
f, s = 5480.2
f, s = 3891.0
f, s = 8295.6
f; 52 = 1069.8
f, s = 22976.7
£ 816> = 15353.5
£, 8,2 = 18564.5
£, 5,2 = 40086.3

£, 5,5 = 59855.0
£, 5,62 = 33508.7
f,, 5,52 = 45523.0
£15 8,62 = 49788.0
£, 5,2 = 14902.0
£, 502 = 19500.7
£, 5,2 = 6950.7
{55 8502 = 2578.5
f,5 8552 = 2068.6
£, 8o = 7680.0

119

f,5 8552 = 37.1
£, Sp57 = 288.0
f27 802 =0

f,5 8552 = 50938.5
£, 8,42 = 29733.6

Substituting the values of the fj s} just found in ITL.26.1, it is
found that . 453080.9 w1
¥ 1336

From Table IT1.4, and II1.23.1 it was found that
S2 = 16 [84.618 — 54.346]
= 16 (30.272) = 484.4

Substituting the values just found for (Sy)? and S} in I11.26.2.,
it is found that 339.1

2 12 1 0.70=10.30
Myx 484.4

Previously in ITI.23.1 it was found that, on the hypothesis of
linear regression, the determining coefficient r® = .26. If the re-
gression is not linear, we have found that the determining ratio -
the real and proper measure of correlation — is 0.30. A legitimate
question: Is the difference between the determining ratio and the
determining coefficient large enough to justify the rejection of the
hypothesis of linear regression? The technique to answer this
question will be shown in Chapter IV.

The reader is ‘cautioned not to follow the usual practice of tac-
itly assuming linear regression and in this sense finding the value
of r2. The proper procedure is to find »? first. Then it should be



120 STATISTICS AND HIGHWAY TRAFFIC ANALYSIS

determined whether »? is large enough to justify the obtaining of
the actual regression (trend) function as well as whether 2 is large
enough to indicate that a significant correlation exists. The former
is discussed and shown in III.29. and the latter in Chapter IV.

In the case just illustrated it is true that %? = 0.30 indicates
real correlation, but it is much too small for predicting or estima-
tion purposes. It is also true that there are sufficient grounds, as
will be seen in II1.29. to reject the hypothesis of linear regression.

A mean square of the deviations in each array is a minimum
when the deviations are taken from the mean of the array. Hence,
the (S;)% in II1.26.2. must be equal to or less than S: in IIT.26.1.
for the same data, since the deviations in III1.26.1. are measured
from the proposed line of regression. Hence, we have shown that

12y 21
It follows from II1.26.2. that v, <1.

If regression of y on x is linear, nf,x —r? found from the sample
differs from zero by an amount not greater than fluctuations due
to random sampling. A comparison of n, — 12 with its sampling
error is a useful criterion for testing linearity of regression. A better
and more powerful method, however, to test linearity of regression
is by the use of the Analysis of Variance.

II1. 27. Multiple Correlation: Suppose we have given N sets of cor-
responding values of n variables x,, x,, ..., Xn. Now separate the
values of x; into classes by selecting class intervals dx,, dx,, ...,
dx;, of the remaining variables.

The locus of means of such arrays of x,’s in the theoretical dis-
tribution, as dx,, ... dx, approach zero is called the regression
surface (trend) of x, on the remaining variables. We now assume,
for convenience, that any variable, x;, is measured from its arith-
metic mean as origin. Let o) be its standard deviation and let rpq
be the correlation coefficient of the n given pairs of values of xp

and xq. We now seek to find by, by, ..., by, of the linear re-
gression surface i
X;=by X, +byyxs+ ... +bpx, +c I1.27.1.

of x; on the remaining variables so that x, computed from
I11.27.1. will give the best estimates in the sense of Least Squares
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of the values of x, that correspond to any assigned values of x,, .. .,
Xpn. It follows that
U=3% (x,— by x;— by xg— ... — by, x, — ¢)2 111.27.2.
shall be a minimum. This gives us for the linear regression surface
2 Rygxq
X;=—¢ - — IT1.27.3.
! ! 22:(1 Ry, 0q
where Ty Tygy «vey Tpp
Tyis Tagy - -es Ty
R =] : .
Ty Tngs «++» Tnn

and Ryq is the cofactor of the pth row and qth column of R.
If the dispersion y.,5...n of the observed values of x; from
computed values is defined as

1
63.93...0= 3 2 (observed x, — computed x, )2 111.27.4.

then, it can be proved that
o® 123« .. 0 = 0'% (R‘E) I11.27.5.
11
We are next interested in the dispersion of the estimated values
given by II1.27.3. Since the mean value of the estimates is zero,
when the origin is at the mean of each system of variates, it can
be shown that
e _ o _R )
o1 = 0 (l — o I11.27.6.
The square of the multiple correlation coefficient r;.,4. . .n of
order (n— 1) of x, with the other n — 1 variable is given by

R
r} =1—— II1.27.7.
1.93 ¢ . .0 (Rn)
The analysis of data furnished by J. S. Ellerby, Safety Director,

Fort Belvoir, Virginia will serve as an example of multiple cor-
relation. These data consist of the following information on 440
drivers:

x; = Road Test

X, = Years of Experience
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x, = Reaction Time
x, = Distance Judgment
x; = Driver Information (Written test)

Let us assume that the road test is a measure of driver ability
and let it be our problem to determine whether each of the other
tests individually or collectively measure driving ability.

The first step is to determine the simple correlation between
each of the tests. The procedure for this is that followed in the ex-
ample of finding the correlation between speed and minimum
spacing.

These correlations are shown in Table II1.5. Before using these
results to obtain a multiple correlation let us consider the signifi-
cance of these simple correlations. It is noted immediately that
none of them is large enough to be significant and therefore our
conclusion is that none of the tests is of value as a measure of
driving ability.

Table 111.5
SmvpLE CORRELATION OF DRIVER TESTS
(1) (2) (3) (4) (5)

Road Test Years Reaction Distance Driver
Experience Time Judgment | Information

0y
Road Test |r;; =1.0000|r;,=.0476 [r;=.0257 |r,=.05514r;; =0.2608
(2
Yrs.
Ezxperience |ry; =.0476 [re=1.0000 [ryy=.006157 |rp,=.00101|r,;=-0.4603
(3)
Reaction
Time |rgh;=.0257 [rg,=.006157 | r;3=1.0000 |r,,=—.0404|rgs=-.1027
(4)
Distance
Judgment ir,, = .05514r
(5)
Driver
Information|ry; ==u .2608|r;, =—0.4603 |ry=—1027 |r5,=.1568 |rg;=1.0000

=.00191 |r,;=—.0404 |r,=1.0000/r,;=.1568

'S
15
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At least one of the correlations is opposite to what one might
expect. A driver with an increase in experience apparently knows
less about driving since the correlation is negative (—.46). How-
ever, since r2 = (.462) = .21 = 21 per cent, only this amount of the
variable in driving knowledge may be said to be explained or de-
pendent upon experience, consequently it may be said that there
is little or no connection between driving ability and experience.

We would not of course be justified in concluding from this one
study that drivers’ tests have no value, for it may be that all of the
drivers tested are good drivers and their visual acuity, reaction
time, and other capabilities are well within the safe range. For ex-
ample, the total range of reaction time was from .350 to .560
seconds. A driver with a reaction time much slower than .56 might
be an accident prone driver. It is fair to say that it is quite a bit
more likely than not, however, that these deductions are valid.

The next question to be answered is that of whether the tests as
a whole give any indication of driving ability, i. e., whether the
sets of data x,, x; x,, and x; taken together furnish us with a
measure of driving ability. To answer this question, we make use
of the theory of multiple linear correlation. The first step in the
analysis is to find the multiple linear regression equation. This is
done by substituting the values for the r’s from Table IIL5, in
equation I11.27.3. and solving by determinants.

Ry2ox, Rypxy Ryx, + Rys Xs]
Ryo, Ryyog Ryon  Ryos

X)) =0,

1Ry, 1 R,y 1 Ry, 1Rys

TT2R,® 3R, 4R, * 5R, °
Toy Toz Toq Ty Ty Top Ty Yo
Ty Taz Tga T35 T3y T3 T3 Ty
Tyy Tag Taa Tas Tyy Tyo Tag Tys
-4t Ts1 Yoz Tsa Tos x,— 1 Tsy Tse T5e Tss x
2| Typ Tog Toq Tog 3| Tgp Tyg Tyy Tgg | °
Tgs T3 Tga Yy Tgp T3z Tzq T35
Tgo Tag Tag Tys Tao Te3 Tyy Ty5
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Tor Top Tpg Ty Ty Typ Tpg Ty
Tgy Tgp Tgg Tgs Tg1 T3y Tgg Ty
Tyy Ty Ty3 Ty Tyy Tyo Ty Ty
L1 Ts1 Toe Tgs Tsg £ 1 Ts1 Toe Tpg Ty x
$ Ty Tog Ty Ty |7 S| Ty Ty Ty Ty |0
Tgp Tgg Ty Ty Tgs Tg3 Tga Tgs
Tgg Tyg Tgq Ty Tgo Tas Taa Ty
Tsa Tsz Tpa Tss Tsa Tp3 Tpa Tss
l.0092 X, ~.0460 x,  —-.0030 x,
— -9.3287 + + +
L7532 11.4434 .7532 0452 L7532 10.2713
~.2722  x, ]
7532 2.7367

= —.0016 x, + .0253 x; 4 .0036 x, + 1.2318 x,.

The next question that is to be answered is how reliable are the
expected values of the x,’s as determined from the regression equa-
tion when sets of values for x,, x,, x,, and x; are known. The
square of the multiple correlation coefficient when properly inter-
preted is the answer to this question.

This is equation II1.27.7

R
r§_23..,n=1_<§1_1)

We first find R by substituting the values from Table ITI.5 for
its determinant and solving.

Tip Ty Ty Tyy Ty
Toy Top Tog Ty Ty
R= |1y ryp Ty 14 Ty | =.6774
Ta Typ Ty Ty Typ
Tgy Tha Ts3 Tsa Ty
Therefore, since R;; = .7532 as determined above,

2 R 6774
Tiosss = l—{=—]=1——" =1—.8994 — .1006
: 1 7532

Since this value, .1006 means that only 10.06 per cent of the
variability in road tests is explained by the composite knowledge
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of the factors, years of experience, reaction time, distance judg-
ment, and driver information, it may be concluded that the com-
posite result of these tests is practically worthless as a measure of
driving ability as shown by the road test.

Another question to be answered is what is the standard error
in the expected values of x. This standard error is a measure of the
total variability that is not explained, or in other words, is not de-
pendent upon the sets of values of x,, x,, x,, and x;.

The standard error in the expected value of x, obtained from
the regression equation II1.27.5 is equal to

. R
— a2
G1o315 = Of R
11

C1.2345 = Oy

= 0.8847
= 88.47 percent

Since

) +e (R ol
GIRZ +o _Ru -—GIR ol clRu—cl
we may say that the proportional part of the total variability (%)

R
that is not explained in terms of x,, x,, x,, and x, isR— = .8994
11

= 89.94 per cent and that the explained variability

R
=1—_— =1-—.8994 = .1006 = 10.06 per cent.
Rll

11

11

I11. 28. Partial Correlation: Very often we wish the degree of corre-
lation between two variables x, and x, when the other variables x;,
Xy, - - -, Xnhave assigned values. Thus, we define a partial correlation
coefficient ry, 4, ... n of x; and x, for assigned x,, X,, ..., X, as the
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correlation coefficient of x, and x, in the part of the population for
which x,, X,, . . . Xa have assigned values. A change in the assigned
values may lead to the same or different values of 1555, . . . n.

Assume that the theoretical mean or expected values of x; and
x, for an assigned x4, x4, ..., Xp are

{X1=b13X3 +buxs+ ... +bypXa

‘ } TI1.28.1.
Xy == Doy Xg + bpga X4 + ... + bypxy
respectively.

Then, a partial correlation coefficient 1’j5.4. .., is the simple

correlation coefficient of residuals

{X1~34---n=X1_b13X3—b14X4— coo —bin Xy

} I11.28.2.
Xp.94...n = Xpg— D3 X3 — Dpg Xg— ... — by X,

limited to the part of the population ng .. .. of the total n for
which x,, x,, ..., Xa are fixed.

Suppose further that the population is such that any change in
the assignment of values to x4, X4, ..., Xn does not change the
standard deviation of X;.5...n DOT of X,.4,...n nor the value of
Tig.34...n Such a population suggests that we define

X3.84...nX2.32...1
r = I11.28.3.
12.34. . .0
NGy.34...0102.34...10

where the summation extends to n pairs of residuals, as the partial
correlation coefficient of x, and x, for all sets of assignments of

Xy ..., Xnp.
If the population is such that r';5.54. . . is not the same for each
different set of assignments of x,, x,, . . . Xp, the right hand member

of TI1.28.3. may still be regarded as a sort of average value of cor-
relation coefficients of x; and x, in subdivisions of a population
obtained by assigning x,, X,, ..., Xa Or it may be regarded as the
correlation coefficient between the deviations of x; and x, from
the corresponding predicted values given by their linear equations
on X,, X4, ... Xp. It can be shown that
_ —Ry
(Rll R22)%
To illustrate, we make use of the data for the Driver tests prev-
iously given in Table II1.5 and set ourselves the problem of finding

111.28.4.

Ti5.38...n
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the correlation between road test and years of experience under
the assumption that each is influenced to some extent by reaction
time, distance judgment and driver information. If each is thus
influenced, the obtainment of the simple correlation coefficient
between the road test and driver experience, assuming the exis-
tence of such influence, gives us spurious correlation. Partial cor-
relation between road test and years of experience is the theory of
correlation that removes the influence of reaction time, distance
judgment, and driver information. Substituting the probable
values of the R’s for IT1.28.4, we find that

—Ry,
Ry Ryp)?

Wherein R, and Ry; have the values already determined and R,,
has the value .8960 found by substituting values from Table
III.5. and solving the determinant.

Ti034 =

Tyn Tig Iyg Ing
Ta1 T3 T3y Tss
Rop = |1y Tyy Ty T | = .8960
Tsp Tsg Tsq Tgp
hence
-Ry, -.0092 _ —0092  -.0092
(Ru1 R22)’} V(.7532) (.8960) V.6749 .8215

therefore, there is practically no partial correlation.

=-0.001

Ty9.30 =

I11.29. Regression (Trend) Lines: Let
Y=a,+28,X+a,X24 ... +a,XP IIT.29.1.

be the equation of expected values of Y that are associated with
the various values of X. It is desired to know the values of the a’s
such that the value of U given by

n
U= % (yi—ay—ay X1 —ayx;—... —a,x})?  TIL29.2.

is a minimum,
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This requires that

U <, -
Z_a—j= E:i(x’iyl —ay E x} — a, E: 0 — ... —a, E 1xi*" 0
T

1

IT1.29.3.
whence
A](p)
&= A® I11.29.4.
where
Uos this = vy Up n, Xfyx, ....26xP, iy,
B Bos = -vos ppa| | 2ExX, 2fx?, L. DfxPL 3fxy,
AO—| .. .

Pps Bp1se » > Hop zfxxp’ foxp'*'l, e foxm)’ foxﬁ)y';
I11.29.5.

and Agp) is the determinant obtained by substituting the product
moments pgy, . .. ppy for the (j + 1)th column in A®,

Tt is not too difficult to show that the regression (trend) equation
may be written in the form

Y, 1, X, ..... , XP
Po1> Hos M1 e eee s Bp
Qi1s Brs Moy eee - » Wpy1 | =0 I11.29.6.
Hp1> Mps Mpaas cv--- s ep

Now consider
Y=b0P0+b1P1+ .o +prp

and demand that X (P;Py) = 0 when j+ k, where the P’s are
polynomials in X, P; being of degree j.
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Again, minimizing

X=Xp
Y=V¥n

2 (Y —by Py—b; P, —...— by Pp)? 111.29.7.
X=X

Y=%

it is found that

2 (¥P)) —by X (PePy)...—bp X (PpPy) =0  TIL.29.8.
Since % (P; Py) for j# k is zero, IT1.29.8. reduces to

ZyP)—b X (P2 =0. I11.29.9.

Hence b, is simply determined by Pyand if in fitting a curve of degree
P, it is desired to proceed a step farther and add a term by, Pp;,
the coefficients by, ..., bp already found remain unaltered. This
method is known as the method of orthogonal polynomials.

The use of orthogonal polynomials gives a convenient method of
determining step by step the goodness of fit of the regression line.
Consider

U=X(y—byPy—...—bpPp)?
=X (y)—2b, Z(yP)—...—2bp 2 (y Pp)
+ b33 (P2 + ...+ b) 2 (P))
But, from II1.29.9., we may express 2. (y P) in terms of 2 (Py?).
Hence
U=Z@F)—b2 2 (P)—...—b: X (P3) I11.29.10.

This shows that the effect of any term by P; is to reduce U by
b} X (P%) and the effect of this term on Uis an independent matter.
Again, if it is found that the addition of any term b; P; does not
reduce U significantly, the conclusion is that the term is redundant
and therefore not necessary or that the fit is good enough.

It is now necessary to obtain the expressions for the various
orthogonal polynomials. To this end, let

1Y
Py = 3 Oy X' TI1.29.11.

In II1.29.11., there are (p -+ 1) unknown constants. Hence, in
all the polynomials up to and including those of order p, there are
L(p+1) (p + 2) constants. The orthogonal relations up to and
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including order p provide L p (p + 1) conditions on the (%s. It
follows that > (p+ 1) (p+2)—2p(p+1)=p+ 1 constants
are assignable at will. For convenience, take one constant for each
P and assign it so that the coefficient of Xiin P;has the value unity.
In other words, put

C]j =1 I11.29.12.

Rewriting I11.29.11., we get
P, =1
P, =Cy+X
P, =Cy +Cy X + X2
Py =G4 +C; X +C,, X2 - X3 II1.29.13.

.................

Pp =Cp+Cpi X+ Cpa X2 ... 4 XP

From the orthogonal relations
E Pp Po = 2 Pp — 0
ZPP =0 I11.29.14.

............

This system, IT1.29.14., is equivalent to

ZPp == 0
ZXPp = 0
2xpPP, =0 111.29.15.

Substituting the values of the P’s from I11.29.13., it is found that

Cooto+Cpritg+ .. +Cpypoypipg Fpp=20
Cp() 5% + Cp]_ 223 + ... -+ Cp, p—1 M4p + KWpy1 = 0 III.29.16.

.................

Cooto—1 +Cprgp + - .. +Cp, p_1tap_s + 1o p-1=0
From these equations,

AD
Cos = o I11.29.17.

where A®D has the same meaning as before and A is the minor

of the term in the last row and (j + 1)th column of A, Tt follows
that
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Moo By oen > Up
1
P, — B M e e II1.29.18
P APD bp-15 ¥py ... s Heop-1
1, X, ..... , XP
It is clear, because of diagonal symmetry of A® that Cpy = Cy.

I11.29.19.

From IIT1.29.15.
2 (P = X (xpPp)

and hence from II1.29.18. if we multiply the last row and sum

n A®
X (Pp?) = AT 11T.29.20.
Likewise
nA P(p) )
Z(y Bo) = — I1.29.21.
Finally, from 111.29.9.
A p(p)
bp = AGT I11.29.22.
and the problem is completed.
Specifically, if yy = 1, p; = 0, o, = 1, then
Py=
'1 0
Ix
P, = '—1— =X I1T.29.23.
101
0 1 g
1 X X2
P, = i 0 =X2—p, X—1
0 1
1 01 py
0 1 pgoyy,
bops g ws
1 X X2Xs8
P, =
1 01
0 1
1
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1
wg—p—1

—_

{(%—@—UXL%w—mw—sz
+%w~£+m—@X+%—2w%+%ﬁ

To illustrate: From Table ITI. 4. the regression data are obtained
and placed in the first three colums of Table I11. 6.

Table III. 6.

) (2) (3) (4) (5) (6) (7N
Yy X fy £, Yy £,X Yy £X £, X2
23.1 1 55 1270.5 1270.5 55 56
27.0 3 75 2025.0 6075.0 225 675
30.6 5 74 2264.4 11322.0 370 1850
30.7 7 70 2149.0 15043.0 490 3430
39.7 9 63 2501.1 22509.9 567 5103
35.8 11 35 1253.0 13783.0 385 4235
38.4 13 50 1920.0 24960.0 650 8450
40.6 15 33 1339.8 20097.0 495 7425
47.1 17 41 1931.1 32828.7 | 2009 11849
44.9 19 37 1661.3 31564.7 703 13357
47.8 21 51 24317.8 51193.8 | 1071 22491
55.4 23 63 3490.2 80274.6 | 1449 33327
54.7 25 81 4430.7 110767.5 | 2025 50625
51.0 27 45 2295.0 61965.0 | 1215 32805
51.9 29 133 6002.7 | 200178.3 | 3857 | 111853
55.4 31 93 5152.2 159718.2 | 2883 89373
58.4 33 109 6365.6 | 210064.8 | 3597 | 118701
55.9 35 86 4807.4 168259.0 | 3010 | 105350
59.5 37 46 2737.0 101269.0 | 1702 62074
61.0 39 49 2989.0 | 116571.0 | 1911 74529
53.3 41 16 852.8 34964.8 656 26896
79.1 43 11 870.1 37414.3 473 20339
60.9 45 8 487.2 21924.0 360 16200
68.5 47 6 411.0 19317.0 282 13254
45.8 49 3 137.4 6732.6 147 7203
48.5 51 2 97.0 4947.0 102 5202
36.5 53 1 36.5 1934.5 53 2809

62814.8 | 1566949.2 | 29430 | 850360
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To obtain the various regression (trend) functions for the data of
Table TIL4., it is necessary to compute the following values, the
obtainment of the first four being shown in columns (4), (5), (6),
(7) of Table 111.6.:

3£ Y, =  62814.8 S X4 = 917057464
i, XV, = 1566949.2 X5 = 32132903385
X = 29430 3£ X6 = 1180837278435
i X2 = 850360 Yf X2V, = 47175422.8
Y2 = 2867513.03 X, XY% =  1535815847.1

i X3 = 27146214

First, it is necessary to compute the value of the by’s from
1I1.29.22. These are found to be as follows:

CAD ug|  |StYx| 628148

by = — = o = = = 47.017 111.29.24.
A9 | |n] 1336
Mo1 n ZfXY}_(_
b _A(%)= Yo Ba| 2f X XX Yy
PTOAD Yuo n X
e Mo X 2 X2
1336, 62814.8
| 29430, 1566049.2 |  (1336) (1566949.2) — (29430) (62814.8)
T 1336, 29430 | (1336) (850360) — (29430) (29430)
29430, 850360
244804567.2
= T =—0.909 111.29.25.
269956060
bo t1 bor n  ZHEX DYy
1 He Hnm X X X® foXY_x
b _A(g)_ Ho (kg Hax| 2 X2 Xf X3 2f, XYy
= = =

A® Ho M Pe n X X X2
U1 Mo W3 X XfX? XfX3
Uy B Mg XfX2 Xf, X3 Xf X4
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1336, 29430, 62815
29430, 850360, 1566949
850360, 27146214, 47175423
1336, 29430, 850360
29430, 850360, 27146214
850360, 27146214, 917057464

1

850360, 1566949 29430, 1566949

1336 ’27146214, 471754231_294301850360, 47175423
o 850360, 27146214 29430, 27146214
1336 ‘ 27146214, 917057464 I — 29430 ’ 850360, 917057464
29430, 850360

+ 62815‘ 850360, 27146214

+850360| 29430, 850360

850360, 27146214
_ (1336) (— 24206) (10%) — (29430) (55901) (106)
" (1336) (42912)  (10°)— (29430) (39049) (10%)

+ (62815) (75801) (109)
+ (850360) (75801) (10F)

——1176482 0.01713 I11.29.26
68673633 e
Ho M1 Mg oy n  EEX NHX? XV

1 Pe M3 Bn 26X XfX2 T §,X3 DXV,
Bo Pg g Wo1 2, X2 T £X DX X2V,
b _ﬁ(?f)= U Ha Us sy X3 XX DX B £,X3Y,
. 3TA(3) Mo M1 Mo W | n  XfX TiX? X X3
1 Mo fa X TX2 X3 Tf,Xs
o K3 Mg s 2 X2 T £,X3 T f,X* 3f,X5
Mg M Mg Mg 2 X3 Y, Xt FEX5 3£, X6

I11.29.27.

Note: To evaluate determinants, the reader is referred to “A Text-
book of Determinants, Matrices, and Algebraic Forms,” by
W. L. Ferrar, Oxford University Press, 1941.
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Next, it is necessary to obtain the various orthogonal poly-
nomials. They are

n TfX| |1336 29430
1 X 1 X
n  |[1336]

Py =

_ 1336 X — 20430
o 1336

=X —22.03 I1T1.29.28.

n 22X NfX2
25X ZHX2 XX

P 1 X X2
2= n 36X
X TiXe
THX TXE| n TEXE ool n E4X
_ | Z5X? B6XS SiX TEX? X Tf.X?
n Xxf£X
SHX DfX?

. 29430 850360

1336 29430
1 850360 27146214

X 1336 850360 .
- 29430 850360

29430 27146214
1336 29430
‘29430 850360

75800048420 — 11241247104 X + 269956060 X2
- 269956060
= 280.7899 — 41.6410 X + X2 111.29.29.

The linear regression (trend) function is
Y = by + by Py = by + by (X — 22.03)

= 47.017 + 0.909 (X — 22.03)

= 26.99 - 0.909 X I1T.29.30.
which agrees with result obtained in I1I1.23.2., p. 115 as it should.
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The quadratic regression (trend) function is

Yx = bo + blPl + b2P2

= 471017+ 0.909 (X - 22.03) - 0.01713 (280.7899 — 41.6410 X + X2)
= 22.18 4 1.622 X — 0.01713 X2 IIT.29.31

Likewise
n XX XiX2 Xf.X8
X XiX2 THX8 Xf.X4
2HX2 X3 XX TX5
P 1 X X? X* 111.29.32
8 n >iX YiX2 DR
DX XX XNi.X8
X2 YiX3 XX

Since the effect of adding the second degree term is rather
small, it follows that the addition of the third degree term is
negligible and redundant. In I11.29.30. and II1.29.31., Yy is the
probable or expected minimum spacing for a particular speed X.

Suppose X = 10 miles per hour, then from II1.29.30. we find
that the expected minimum spacing in feet is Yy — i’m = 36.08
feet, and from I11.29.31., we find Yy = Y, = 36.69 feet.

Again, if X = 30 miles per hour, 111.29.30. gives Y, = 54.26
feet and T11.29.31. gives Y, = 55.42 feet.

If X = 50 miles per hour, II1.29.30. gives ?50 = 72.44 feet and
I11.29.31. gives 60.45 feet.

It is to be emphasized that because of the scarcity of data be-
yond a speed of 40 miles per hour, it is not possible or scientific-
ally sound to use the regression functions to predict the minimum
spacing beyond that speed. In any event, however, the use of the
quadratic function, IT1.29.31., gives the better estimate of the
minimum spacing in so far as we are able to use either theory. For
the lower speeds, II1.29.80. gives an underestimate and for the
higher speeds an overestimate.

It also appears very likely that the actual minimum spacing
is not expressible in terms of a single regression function. In other
words, it appears that there may be one regression function for
lower speeds and a different one for higher speeds.
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CHAPTER IV

SAMPLING THEORY

Reliability and Significance

IV. 1. Objective. In this chapter it is proposed to show how to
use the mathematical models of distribution that were developed in
Chapter IIT as a basis for making inferences from a limited number
of happenings that will apply to all such happenings. This process
of reasoning from the particular to the general is known as in-
ductive inference and in a broader sense is called sampling theory.

Inductive inference is a means by which scientific progress
comes about. The research worker obtains data through planned
experiments or through the observation of natural happenings
such as the occurrence of accidents at certain types of highway
intersections. From the data obtained he infers that certain things
are so. But it is well known that exact inductive inference is
theoretically impossible. One of the functions of statistics is to
provide techniques for making inferences and for measuring the
degree of certainty of the inferences.

In order to make the idea of inference somewhat more concrete,
let us suppose that we have observed the speeds of one hundred
vehicles at a given location and have found that five were travel-
ing over seventy miles per hour. We might estimate from this
sample that five per cent of all vehicles travel over seventy miles
per hour, but we would not be very sure as to the correctness of our
estimate for we know that a different sample of this limited size
would undoubtedly lead to a different estimate. At best the
sample contains but partial information about the law of behavior
of the total population of drivers. Population is used in its statis-
tical sense meaning a collection of results or objects. Summary
numbers calculated from the sample accurately characterize the
sample, but the important question is, how good are these same
summary numbers when used as estimates of the characteristics
of the population? What is the error committed by the use of

138
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sample characterizing numbers in place of the associated popula-
tion characterizing numbers ?

The role of statistics in providing a measure of the uncertainty
of inferences from samples is confined to sampling errors. It must
be assumed that the experimenter has guarded against accidents in
recording the data. In gathering data the first consideration is the
obtaining of a random sample.

IV.2. Random Sampling: In order to demonstrate what is meant
by random sampling let us suppose that we have a given population
and that the attribute or attributes of the population to be mea-
sured are specified. The problem is to find a sampling method for
the given population and the stochastic variable being measured
that will yield a random or unbiased sample. The answer lies partly
in theory and partly in techniques that have been proven in
practice or may have to be devised to meet a given situation.

The first requirement is that there be no obvious connection be-
tween the method of selection and the properties being studied. The
method and the properties must be independent in so far as our
prior knowledge enables us to make them so.

To meet the second requirement that the sample be a random
selection, we rely on our previous experience with a given method
as well as our intuition to justify its use on new occasions. A
very reliable method of drawing random samples consists of con-
structing & model of the population and sampling from the model.

Actually, randomness is largely a matter of intuition. The theory
of probability considers the set of all possible different samples that
may be drawn from a specified universe and enables us to derive
their distribution law for any desired characterizing summary num-
ber. This theory requires that it be made certain that the sampling
method will tend to yield all possible different samples with equal
frequency. A method that does this is called a random method.

IV.3. Distribution of Sample Arithmetic Means. For the purpose of
illustrating the law of the distribution of sample arithmetic means,
let us suppose that we have a normal universe, and that from this
universe, we draw a large number of samples all of the same size,
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n. If the samples are random and drawn independently, then the
distribution of sample arithmetic means is also normal. Further-
more, the arithmetic mean of the distribution of sample arith-
metic means is the true arithmetic mean of the universe and the
standard deviation of the distribution of sample arithmetic means
is the standard deviation of the universe divided by the square
root of the size of the sample. Expressed symbolically: If Xl, X )
X3, ey X,, Xk are the sample arithmetic means and if X is
the arlthmetm mean of the universe from which the samples were
drawn, then

3 _ 2 Xl.
k
If & is the standard deviation of the universe of measures and
sz is the standard deviation of the distribution of sample arith-
metic means, then

IvV.3.1.

(¢}
S5 =—=. Iv.3.2.
Jn
The value s is frequently called the standard error of the arith-
metic mean. Actually it is the measure of reliability of the arith-
metic mean and is in fact the expected error committed when a
particular sample arithmetic mean is used in place of the true
arithmetic mean of the universe. The smaller the expected error,
the more reliable or the more precise is the sample arithmetic mean.
The measure of reliability given by IV.38.2. is exact in theory but
not usable in practice because the value of ¢ depends upon the
population which is not known. Consequently it is necessary to
obtain from the sample an wunbiased estimate of the universe
variance ¢2, indicated by the symbol 62 This is equal to:
n

g2 = g2 1v.3.3.
n—1

where s? is the variance of the sample. Substituting this value 62
for o2 in IV.3.2., we obtain

By = IV.34.

L
Vn—l

which is usable as the standard error of thé arithmetic mean.
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Tt is to be noted that IV.3.3. gives an estimate of universe
variance.

Using the data of Table IL1. it was found that the arithmetic
mean was 38.2 miles per hour and the standard deviation, 8.9 miles
per hour. In I1.22., page 50, it was also found that the expected
speed of 38.2 miles per hour was in error at most 23.3 per cent
with a measure of confidence of 71 per cent. To find out how near
the true value of the arithmetic mean our sample mean is, we
substitute in IV.3.4. and find that

8 8.9
——— = 0.52 miles per hour. Iv.3.5.

ST Vn—1" V299
which is the expected error in the sample arithmetic mean. In
other words, it is 68.27 per cent certain that the true arithmetic
mean in the universe has a value between 38.2 — 0.5 = 37.7 and
38.2 -+ 0.5 = 38.7 miles per hour. (68.27 is the per cent of area
contained within one standard deviation on each side of the
mean). In this case the maximum - expected relative error is
0.52/38.7 = 1.3 per cent with 68.27 per cent certainty. In like
manner it is 95.45 per cent certain that the maximum relative
error does not exceed 2.6 per cent and similarly it is 99.73 per cent
certain that the error does not exceed 3.9 per cent. The conclusion
then is that the sample arithmetic mean is fairly reliable (precise)
but as found before, it is not usable as a typical or characterizing

speed.

IV. 4. Inference Concerning Population Mean. Let y be the popu-
lation mean and X the sample mean. It is desired to test the hypo-
thesis: The sample whose mean is X could have come from a
population with mean . If this is so, how certain are we that
it did ? This question is answered by using the t-distribution where
in this case

g Xel IV.4.1.
8%
For example: Could our sample with arithmetic mean of 38.2

miles per hour have come from a population whose arithmetic
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mean is 40 miles per hour ¢ Substituting the values already found
in IV.4.1., we have

| 38.2—40.0 |

b= | = 1.54
0.52

Making use of the t-table in “Statistical Methods for Research
Workers’5 with in this case n — 1 = 299 degrees of freedom it is
found that 5 per cent of the time the difference as expressed by t
would be at least 1.97. Only one degree of freedom is lost because
the only restriction is that the deviations are taken from the
mean of the sample. However, our value of t = 1.54 is less than
1.97. Hence it is concluded that on the 5 per cent level of sig-
nificance we have insufficient grounds to reject the hypothesis.
In other words, if the hypothesis is rejected, it would be rejected
when it is true slightly more than 5 per cent of the time. This
means that we would have a slightly greater than 5 per cent
risk in rejecting the hypothesis. To putit in another way the odds
are a bit less than 95 to a bit more than 5 per cent in favor of re-
jection of the hypothesis. The level of significance and risk are
synonymous, for the level of significance is the probability that
the hypothesis is true and its complement is the probability that
the hypothesis is not true.

IV. 5. Confidence Limits. Since it is impossible to estimate or
predict the true value exactly it is necessary to obtain two numbers
between which the true value will fall. These two numbers are
known as confidence limits. To obtain them, it is necessary first
to determine the value of t associated with the relevant degrees
of freedom (number of possible values variable assumes minus
number of rigorous conditions or constraints the values must obey)
and a desirable probability level of significance.

The sample arithmetic mean may be greater or less than the
population arithmetic mean. From IV.4.1, it was found that
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It is not hard to see from this equation that + t = (}_( — u)/sz, or

po=X & ts; IV.5.1.
which gives the two values (confidence limits) between which the
true sample arithmetic mean will fall. These values are based upon
the specific degrees of freedom and level of significance as de-
manded by the subjective problem. The limit of significance and
the degree of reliability may be of any desired value.

To illustrate: Suppose we have a sample whose arithmetic mean
is 52, whose standard deviation is 5 and whose size is 101. It is de-
sired to find the confidence limits on a 5 per cent level.

Making use of the t-table with (n —1) = 100 degrees of freedom
and IV.5.1.,, it is found that

5
p =52 4 1.98 (E)
=52 4 0.99
whence the two values of p. are 51.01 and 52.99.

This means that it is 95 per cent certain that the true arithmetic
mean of the universe lies between 51.01 and 52.99. Again, it is
95 per cent certain that if we take the arithmetic mean of 52 as the
value of the population (true) arithmetic mean the error com-
mitted will not exceed 0.99/52 = .019 = 1.90 per cent. If the
error that may be tolerated (which is obtained from the subjective
material) is not less than 1.90 per cent, then for the pertinent
purpose the sample arithmetic mean may be used as the population
arithmetic mean. Otherwise, it may not be used.

1V. 6. Difference Between Sample Arithmetic Means. Frequently the
arithmetic means are computed from two independent samples.
The question that needs to be answered is: Are these samples in-
dependent and from the same normal universe ? To answer this
question we again make use of the t-distribution, but in this case
we use for t the value t’ given by

| X, — X, |
t'=1/(N; + N,) (N, 82 + N, $3)
(N1N2) (Nl +N2"" 2)

Iv.6.1.
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where
I—il is the arithmetic mean of the first sample
X, is the arithmetic mean of the second sample
S2is the variance of the first sample
S2 is the variance of the second sample
N; is the size of the first sample
N, is the size of the second sample
N, + N, — 2 are the degrees of freedom and

(N, + N,) (N, 8% + N, 8)
(N1N2) (N1 + N2 - 2)

distribution of differences between independent sample arithmetic
means from the same normal universe.

is the standard deviation of the

To illustrate: Suppose we have the following two samples:
Sample I Sample 11

Arithmetic mean X, =145 X, =150
Standard Deviation S;= 5 S,= 6
Number of Individuals N;= 12 N,= 20

We wish to test the hypothesis: The difference between the
sample arithmetic means is insignificant, therefore, these two
samples are independent and from the same normal universe.

To make the test we use IV.6.1. Substituting the given values
in IV.6.1., it is found that in numerical value

, | 145 — 150 | _ 55
V32 [12(25) + 20 (36)] V453 218
240 (30)

Making use of the t-table with (N} + N, —2) = (12 + 20 — 2)
= 30 degrees of freedom it is found that when t = 2.042 the prob-
ability that the two samples came from the same normal universe
is 0.05 and when t = 2.750 the probability is 0.01. The value of
t = 2.35 lies between the 5 per cent and 1 per cent levels of signi-
ficance, hence, we conclude that the two sample arithmetic means
are significantly different on the 5 per cent level but not so on
the 1 per cent level. This means that the odds are between 95 and
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99 to between 5 and 1 in favor of rejecting the hypothesis that
the two samples came from the same normal universe.

It is important to note that if the two means had not been sig-
nificantly different it would have been necessary to investigate
the significance of the difference between the variances. The
method of doing this will be shown later.

If the variances or the means, or both, are significantly different,
we have grounds to reject the hypothesis; but if the variances and
means each are not significantly different, we do not have grounds
to reject the hypothesis. This is true because the normal distri-
bution is a two-parameter family of curves.

IV.7. Size of Sample for Arithmetic Mean. Suppose we require,

within a specified degree of certainty, that the sample arithmetic

mean shall differ from true mean by not more than a given «.
Consider again

X —
p= ¥ IV.7.1.
8%
Since the error is ¢, it follows that X — u =<. Hence IV.7.1.
becomes
€ € 8
t=—= Iv.7.2.
8z N—1
Rewriting IV.7.2., we obtain
N—1 s
T T oer Iv.7.3.

Suppose we wish to know the size of the sample such that it is
95 per cent certain that the sample mean is within 2 units of the
true mean of the universe. In this case, if the variance of the
sample is 100, s? = 100, e = 4 and from IV.7.3,,

N-1 100
= =2
. N-1
From the t-table, it is found that when N = 101, 5

N-—-1
= 25.508 and when N = 91, & = 22.727. Hence, the size of

the sample is 101.
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IV.8. Reliability of Sample Standard Deviation. The test for the
reliability of a sample standard deviation is defined as %2 (Chi-
square) and is

NS

o2

4 IV.8.L
where N'is the size of the sample, S is the sample variance and o2
is the population variance. Thus x2 is the sum of the squares of
N—1 independent normal deviates divided by their common
variance.

This criterion is useful for comparing a sample variance with a
population variance.

To illustrate: Take a sample of size 10 whose variance is 25,
could this sample have come from a universe whose variance is 16 ?

Using IV.8.1., it is found that

10 (25) 250
2 — =" =15.63
16 16

From a %2 table for (N — 1) = 9 degrees of freedom, it is found
that the probability of x2 > 14.684 is 0.10 and the probability of
¥2 > 16.919 is 0.05.

It follows that a population (universe) having a variance of
16 could yield a sample with variance of 25 or more between 5 and
10 times out of 100.

Sometimes it is desirable to obtain from the sample an unbiased
estimate of the true universe variance. This is accomplished by
using

N

02.=N_1

S2 1V.8.2.

which in this case becomes
10
o2 = —9— 25 = 27.8

which means that the expected value of the universe variance is
27.8 when the sample variance is 25 and the size of the sample is 10.
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IV. 9. Significance of Difference Between Sample Variances. The
test here is to determine, with respect to variance, whether two
samples are independent and from the sample normal universe.
The criterion is the F-test which is given by

S:2
FebL IV.9.1.
S .
2
where §'%= ﬂsil and 8.2 = 1\1:2821 and the degrees of freedom

1~ 2
for 8%is N; — 1 and for 8} is N, — 1. Having two unbiased esti-
mates of variance, always use for 8;*the greater of the two variances.

To illustrate: Let there be given two samples of 10 and 12 indi-
viduals respectively. Let their variances be 10 and 5 respectively.
Are these two samples independent and from the same normal
universe ? In other words, is the variance 10 significantly greater
than the variance 5?7

Substituting in IV.9.1., it is found that F becomes

NS [ N,S;  10(10) 12 (5)
T N,—1/ N,—1 9 11
= 2.04

From the F-table with n, = N; — 1 = 9 degrees of freedom and
n, = N,—1 = 11 degrees of freedom, we find that at the 5 per
cent level of significance F is 2.90 and at the 1 per cent level
of significance F is 4.63.

Hence we conclude that, since our value of F is 2.04 which is less
than the F for the 5 per cent level, the larger variance is not signi-
ficantly greater than the smaller. In other words, there are not
sufficient grounds to reject the hypothesis that the two samples
could have come from the same normal universe.

F

1V.10. Significance of a Correlation Coefficient. The question here is:
Could the sample whose coefficient of correlation is r have come
from a non-correlated universe ¢ We use
N3
J1—12
where the degrees of freedom are N — 2.

t Iv.10.1.
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To illustrate: Suppose we have a sample of size 11 whose coeffi-
cient of correlation is 0.60. Could this sample have come from a
non-correlated universe ?

Substitute these values in IV.10.1., and we obtain

0.60/11—2
t__

T
1.80
=29
8

From the t-table with 9 degrees of freedom we find that at the 5
per cent level of significance t = 2.262 and at the 1 per cent level
of significance t = 3.250. Hence we conclude that a little more
than 5 per cent of the time the sample could have come from a
non-correlated universe and a little less than 95 per cent of the
time, it could not. In other words, the odds are about 95 to 5 in
favor of rejecting the hypothesis that the sample could have come
from a non-correlated universe.

In the case of a multiple correlation coefficient, if we wish to
test whether the sample came from a non-correlated universe, the
criterion is

1i.23...n/(m — 1)
1—ri2s...0)/(N—m)
where m is the number of parameters in the regression function, N

is the size of the sample and N, =m —1, N, = N — m are the
respective degrees of freedom.

F= 1v.10.2.

To illustrate: Assume that r; 53 = 0.60 and that the regression
function is a plane that is, m = 3 and that the size of the sample
is 103.

Substituting in IV.10.2., we have
.36/2
~ 64100
From the F-table wefind that at the 5 percent level, F= 3.09 and at
the 1 per cent level F =4.82 whenn, =m—1=2andn, =N—m
= 100. Hence we conclude that there are ample grounds to reject
the hypothesis that the sample came from anon-correlated universe.
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To test the hypothesis concerning a partial correlation coeffi-
cient the procedure is the same as that for a simple correlation
coefficient with the exception that the number of variables held
constant must be substracted from the size of the sample N.

Hence, if k-variables are held constant the test is

k
2 _E_
Tio57...n/1

F = % IV.103.
(1 —r257.. w/(N—k—1)

REFERENCE, CHAPTER IV

1 Yule, G. Udney, and Kendall, M. C., “An Introduction to the Theory
of Statistics,” C. Griffin & Co., London, 1937.

2 Croxton, F. E., and Cowden, D. J., “Applied General Statistics,”
Prentiss-Hall Ine., New York, 1946.

3 Rider, Paul, “Statistical Methods,” John Wiley & Sons Inc., New York,
1939.

4 Kendall, M. C., “The Advanced Theory of Statistics,” Charles Griffin
& Co., London, 1946, Vol. I, page 40.

5 Fisher, R. A., “Statistical Methods for Research Workers,” Oliver and
Boyd, Ltd., Edinburgh.



CHAPTER V

SOME APPLICATIONS OF
STATISTICAL METHODS

V. 1. Objective. This chapter illustrates some of the applications of
statistical methods to problems of most interest to traffic engineers.
Usually astatistical approach is more rational than any other and leads
to a better understanding of the factors involved. The methods
apply to all types of traffic problems, but first we shall study those
that have to do with highway capacity. These problems are of
primary concern, for they are connected with the main purpose
of a highway which is to serve traffic.

V. 2. Confusion As to Meaning of Highway Capacity. Before attempt-
ing any analysis, it is necessary that certain terms be defined. There
is some confusion as to what is meant by highway capacity. This
is brought out by the Highway Capacity Manual', which states
that the term perhaps most widely misunderstood and impro-
perly used in the field of highway capacity is the word capacity
itself. Considerable work went into the preparation of this manual,
and it offers the most authentic and complete information extant
on capacity. In Part I, Definitions, is found the statement that
“the term capacity without modification, is simply a generic ex-
pression pertaining to the ability of a roadway to accommodate
traffic.” The manual gives three levels of capacity:

1. Basic Capacity: ‘“The maximum number of passenger cars
that can pass a given point on a lane or roadway during one
hour under the most nearly ideal roadway and traffic con-
ditions which can be attained.”

2. Possible Capacity: “The maximum number of vehicles that
can pass a given point on a lane or roadway during one hour
under the prevailing roadway and traffic conditions.”

3. Practical Capacity: “The maximum number of vehicles that
can pass a given point on a roadway or in a designated lane

150
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during one hour without the traffic density being so great as
to arouse unreasonable delay, hazard, or traffic conditions.”
Prevailing roadway conditions include roadway alignment,
number and width of lanes.

From a practical standpoint, speed should be included in any
definition of traffic capacity. The driver is interested primarily in
the amount of time it takes him to arrive at his destination. Perhaps
capacity, meaning vehicles per hour, should be supplemented by a
dimensionless index number similar to the Reynolds number in
hydraulics. This number would indicate critical limits.

Since the term capacity has a variable meaning, we shall in most
cases use the word volume and define it as the number of vehicles
passing a given point per unit of time. Density will refer to the
number of vehicles in a given length of lane. With these definitions,

Average Volume = Average Density times Average Speed.

V.3. Theoretical Maximum Capacity (Volume). The amount of
traffic per unit of time depends on the speed and the spacing
between vehicles. The greater the speed the larger is the volume,
and the greater the spacing the less is the volume. Therefore,

Speed

This same reasoning applies to any number of lanes in the same
direction, but with more than one lane, passing takes place, which
adds another factor to be considered. For the sake of simplicity, we
shall first take up the theoretical capacity of a single lane.

In general, anyone who has observed traffic knows that as
speeds increase, the spacing between vehicles increases. If the
spacing increases at a greater rate than the speed, then there is an
optimum speed that gives a maximum volume. If the spacing in-
creases at a rate equal to or less than the speed, then the higher
the speed the greater the volume. The question of minimum
spacing needs to be examined critically.

The original assumption was that drivers should and did main-
tain a safe stopping distance behind the vehicle ahead. This safe
stopping distance was based on the possibility that the car ahead
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might stop instantaneously. This, of course, practically never hap-
pens for it can take place only through some unusual occurrence
such as the head-on collision of two vehicles. That the original
assumption of minimum spacing persists is evidenced by an article
in Traffic Engineering for August, 1950, by Dr. Victor F. Hess,
Physics Department, Fordbam University, New York.2 It should
be mentioned that Dr. Hess is deriving a formula for safe travel
at a maximum efficiency. This article states accurately that the
stopping distance includes (1) a, the distance the vehicle travels
during the “reaction time”, (time interval between the stop signal
observed and the instant the brakes are applied) and (2) b, the
distance the vehicle travels after the brakes are applied. The dis-
tance g is proportional to the speed of the car v.

a=tv
Distance b, the braking distance, is the distance required to

absorb the kinetic energy of the vehicle (1, mv?), and therefore
must vary with the square of the velocity; that is

b = kv?
in which the constant k is a factor depending upon the efficiency
of the brakes and the coefficient of friction between the tires and
the pavement. The stopping distance is equal to
a4+ b=tv -+ kv?

in which t = reaction time, which is usually taken as .75 second.

V.4. Stopping Distance And Minimum Spacing. Observations
have proved that the stopping distance 18 not the minimum spac-
ing between vehicles. This fact may also be arrived at by inductive
reasoning.

If we assume that two vehicles are mechanically equivalent and
traveling at the same speed, then one can be stopped in the same
distance as the other, and if they both start to stop at the same
instant, they will come to rest at the same distance apart as when
the brakes were applied. The fact that the brakes cannot be
applied at the same time results from the rear driver’s needing
time to react. What takes place is that the driver sees the car
ahead start to stop and then reacts and applies his brakes. This
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reasoning leads to the conclusion that the minimum spacing be-
tween vehicles consists of the distance required for reaction plus an
additional distance which the driver maintains as a safety factor.
This factor of safety distance may be quite small.

From photographic observations of vehicles traveling in queues
s0 that each one could be assumed to be traveling at minimum
spacing, it was found that the average minimum spacing in feet
was approximately s = 1.1v + 21 in which v = speed in miles
per hour*.? The factor 1.1 corresponds to the reaction time of
.75 seconds if the speed is given in feet per second. The 21 feet is
the spacing when v = 0, and includes the length of the vehicle.
This factor was determined in 1933, for a given composition of
traffic and would evidently not apply in all conditions. It may be
noted that if the spacing is expressed in time, it tends to be a
constant. At 20 m.p.h. the time spacing would be 1.46 seconds; at
30 m.p.h., 1.2 seconds; and at 40 m.p.h., 1.1 seconds.

Observations in urban traffic have shown that the average
minimum spacing between vehicles expressed in time is practically
a constant, regardiess of speed. In one case, it was found to be
1.1 seconds for all speeds which were low.4

In Part 3 of the Capacity Manual, Figure I shows the minimum
spacings given in the table below. These spacings, if we assume a
reaction time of .75 seconds, may be divided into a reaction-judg-
ment distance plus a braking distance.

Table V.1
Observed | Reaction [Additional | Ratio of Ratio of
Speed Minimwm | Distance | Braking Braking Vs

Spacing |75 Seconds| Distance | Distances
10 44 11 33 38fas = .87 | 10fe0® = 0.25
20 60 22 38 38/, = .81 | 502/ = 0.45
30 80 33 47 /gs = T3 | 302/se® = 0.56
40 108 44 64 64/es = 75 | o2/se® = 0.64
50 140 55 85

* Coupare with the formula s = 0.909 v (III. 23.2) which was based on
data which did not include zero speeds.
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The braking distances for stopping should be proportional to the
square of the speeds, but as shown in the table, the minimum
spacings are not proportional to this amount. This is additional
evidence that minimum spacings do not depend on braking ability.

V. 5. Interpretation of Minimum Spacing Formula. The formula
s = 1.1v + 21 would give a maximum traffic flow of about 4000
vehicles per hour per lane. This, of course, is never realized except
momentarily. If a stream of traffic were moving at this minimum
spacing, the slowing or stopping of any vehicle would immediately
affect all following vehicles. The formula is not given because of
its practicability but because it points to two significant facts.

a. The volume increases with speed, but apparently approaches
a maximum point at about 40 miles per hour where the con-
stant 21 ceases to be significant.

b. The minimum spacing depends primarily on ‘reaction-
perception-judgment” time.

V.6. Limiting Factors. To summarize: The factors that limit the
capacity of a highway are:

1. Necessary minimum clearance between vehicles.

2. Slow moving vehicles that retard others, when passing is not
possible, due to lack of space on the opposite lane or to re-
stricted sight distance.

3. Reduced overall speeds caused by the physical features of the
highway, the mechanical characteristics of vehicles, or the
desire of drivers.

These factors need to be studied in as much detail as possible if we
are to reach a clear conception of the problem of measuring the
ability of a highway to accommodate traffic.

V.7. Additional Relationships of Spacing and Speed. In a study
made in Ohio in 1934, it was found that there is a straight line re-
lationship between average density in vehicles per mile (spacing)
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and average speed. As the density increases, the speed decreases.
Expressed in the form of an equation
Speed
Density
where k is a constant for a given roadway and composition of
traffic. If this relationship is true, and it was based on observations
of over 220 groups of 100 vehicles each, it means that with a given
highway and composition of traffic the potential capacity range
can be obtained by getting the speeds at a low depsity and at
a high density since two points determine a straight line.
Speed
ensity
true is indicated by information given in Figure 5, page 31, of the
Highway Capacity Manual.
This figure indicates that there is a straight-line relationship
between speed and volume of vehicles per hour. The equation of

That the relationship = k may be only approximately
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the curve for “the majority of existing highways” as nearly as
may be judged from the Figure, is

S=43—.009V,
where S equals speed in miles per hour and V equals volume.
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s
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(Figure 5, page 31, “Highway Capacity Manual”, Used by Permissions of Bureau of Public
Roads, U.S. Department of Commerce.)
Letting D = density in vehicles per mile of roadway, V=D-§,
so that
S=43—.000V =43 —.009D-S
or
43

S=1+.009D
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By plotting speed against density Figure V.3. is obtained. The
graph has very little curvature being nearly a straight line. Hence
for practical purposes it may be assumed with slight error that
speed varies directly (i.e. lineally) with density. It appears that
this may be as nearly correct as the assumption that speed varies
directly and lineally with volume.
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Ficure V.3
AVERAGE SPEED OF ALL VEHICLES ON LEVEL, TANGENT SECTIONS
OF THE MAJORITY OF EXISTING 2-LANE MATN RURAL HicEWAYS

Returning to the 19344 report it will be noted that in Figure V.1.
(taken from page 468 of the report) the point that is marked “free
speed” indicates that practically no drop in speed on the two-lane
roadway was observed until the volume reached about 400 ve-
hicles per hour. The figures near the curve show the number of
groups of 100 vehicles each for which the point marked is the
weighted average. The maximum possible volume was not ob-
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served directly, but was obtained by assuming that the curve was
a straight line. The “free speed” for the curve shown was 43.8
m.p.h. This point is indicated to be about ten units to the right
since no noticeable speed drop was observed until the volume
reached about 400 vehicles per hour. The maximum possible
volume would come at the mid-point of the curve and would equal

46 195
> X - = 2,300 (approx.) vehicles per hour. That the mid-point

of the curve gives the maximum volume is easily proved.
Let S, = maximum speed and D, = maximum density, then

S1 f ——
ope of curve D

m

S
Let x = varying values of D, then V = (S —x ]—5—'3) X

= (Sx — xz—SE)
Dy

Differentiating with respect to x

av
EE— —92x m
dx n
, Sm
For maximum volume S —2x—=10
Dy
whence, X= —é'ir_ mid-point of the curve.

If this straight-line relationship holds, then the maximum capacity
varies over a small range, since the end points of the line are fixed
by the maximum average speed and the minimum spacing which
have small variations.{

V. 8 Volume and Speed. If volume is plotted against speed, the re-
sulting curve is given in Pigure V.4. This curve shows that there
is a maximum volume and also that there are two speeds that give
the same volume. At the lower speed, there is considerable time
loss, Figure V.5.
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These curves bring out the fact that capacity needs to be ex-
pressed in terms of both volume and speed. At maximum volume
there is always a considerable time or speed loss. The maximum
volume is evidently not a design volume.

The Capacity Manual gives a great deal of evidence that there
are definite relationships between speeds and volumes. This is
brought out by numerous curves which show such information as
the number of drivers desiring to pass compared to the number
that have an opportunity to pass, the total percentage of the time
that desired speeds can be maintained, and the point at which
drivers become influenced by the presence of vehicles ahead of
them. Using the facts set forth in the manual, it is our purpose to
see if there is a rational explanation of the interrelationships of the
different phases of the behavior of drivers that can be expressed
mathematically.
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V.9. The Nature of the Problems of Highway Traffic. We have dis-
cussed some of the elements of the problems of highway capacity,
but have said very little about the nature and variability of these
elements. It is this variability that makes it difficult to solve the
problems involved. If all vehicles traveled at the same speed, or if
all people reacted in the same time interval, or if all drivers main-
tained the same spacing at the same speed, the solutions would be
comparatively easy.

There is nothing new about the idea that the behavior pattern
of drivers is a stochastic variable. One of the writers found in 1933,
as already mentioned, that the minimum spacing depended prim-
arily on reaction-time which psychologists have long recognized as
a stochastic variable.3 Mr. John P. Kinzer assumed in 1934, that
the traffic distribution on a roadway followed a “random” or
Poisson distribution.® In England, Mr. William F. Adams found
that free flowing traffic conformed so well to the distribution given
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by a random series that it might be described as ‘“normal.” That
the time spacings between vehicles follow a random series in urban
traffic was reaffirmed by a study made in 1944-46.7

V. 10. S8pacing as a Random Segies. The assumption that spacing in
either time or distance units follows the “random” series furnishes
a means of studying the nature of spacing. To satisfy the conditions
of the Poisson series, a roadway would have vehicles scattered
along it at random so that any vehicle would be completely in-
dependent of any other vehicle, and equal segments of the road
would be equally likely to contain the same number of vehicles.
Granting that these conditions exist, the total number of vehicles
on a roadway divided by the number of segments of road equals
“m” the average number of vehicles per segment. Then, according
to the Poisson series, the probability of zero vehicles appearing in

a segment is
mo
-m |
° (0!)

The probability of one vehicle appearing is

)

The probability of two vehicles appearing is

-

and the probability of n vehicles appearing is

mo
e mj___
n!

The sum of all the individual probabilities is

afet
e 0!+T!—+2—!+...+'I—1T+....
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But

Therefore,

eMm.el —gl=1
This simply demonstrates what we know, namely that the sum of
all probabilities is unity, which means that an event is certain to

Table V.2

Frrrne oF PoissoN CURVE BY CHI-SQUARE TEST
NUMBER OF VEHICLES APPEARING IN FIVE-MINUTE INTERVALS

Observations Taken on U.S. 20 Near Oaklawn, Illinois. Data Supplied by the U.S.Public Roads

Administration.
1 2 3 4 5 6 7
g =
S > |53, ¢
w 2 I T S
% 5] § § \) 8 8‘
S e M Sy w3 g &
25 & oF §§ @ ¥
32| 8 ] 3 2 o & 3|
s &8 | B T2 3 o
z § 8 8 UV & iy = <
0 3 | .009095 2.983} ‘
1 14 042748 | 14.021 —.004 .000016] .000001
2 30 .100457 | 32.949 —2.949 8.696601 | .264
3 41 157383 | 51.621 10.261 | 112.805641 | 2.185
4 61 .184925 | 60.655 345 110025 ( .002
b5 69 .173830 | 57.016 11.984 | 143.616256 | 2.519
6 46 .136167 | 44.662 1.338 1.790244 ( .040
7 31 .091426 | 29.987 1.013 1.026169| .034
8 22 053713 | 17.617 4.383 19.210689 | 1.090
9 8 .028050 9.200
10 2 .013184 4.324
11 0 1005633 1.847 —5.095 25.959 1.613
i2 1 002206 724

Chi-square, % = 7.747
m = 4.75 seconds
Degrees of Freedom = 9 — 2 =7
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happen or not to happen. In this case, it means that any segment
is sure to contain zero or more vehicles since this covers all alter-
natives.

V.11. Test of Goodness of Fit of the Poisson Series. The goodness
of fit of the Poisson Series to a set of data may be tested by the
Chi-square (y2) test. A cumulative Poisson table of probabilities
is used to obtain the theoretical frequencies. The data in the illu-
strative example consist of the numbers of vehicles appearing in
five minute intervals on Route U.S. 20 near Oaklawn, Illinois. The
volume of flow averaged about 115 vehicles per hour. These data
were made available by the Public Roads Administration.

The first two columns in Table V.2. show the observed data.
The figures in Column Three are taken from a Poisson table.
Column Four is found by multiplying the figures in Column Three
by the number of intervals observed (N = 328) to obtain the theo-
retical frequency. Column Five gives the differences between the
observed or actual frequencies and the theoretical. Note that in
this column the first two terms and the last four in Column Four
have been combined to obtain a minimum actual or theoretical
frequency that must be five or more. Column Six gives the square
of these differences. The figures in Column Six divided by the
theoretical frequency give the values in Column Seven. The sum
of these values, 7.747, equals “Chi-square” (x2).

The degrees of freedom are equal to the number of classes less 2,
i.e., 9—2="17. From a Chi-square table of probability levels, it
is found that the probability level is about .60 or 60 per cent.

A 5 per cent level is usually taken as sufficient to indicate that
there is reason to reject the hypothesis that the data can be
represented by the curve. Therefore, the present level of about
60 per cent is taken to be rather conclusive evidence that the data
may be represented by the Poisson Curve.

V. 12. Test of Goodness of Fit of the Poisson Series to the Distribu-
tion of Spacings Between Vehicles. As already mentioned we are also
interested in the distribution of the time or distance spacings be-
tween successive vehicles. It is these time-gaps on the opposite
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Table V.3
Frrrineg oF PoissoN Curve BY INnDIviDUAL TERMS TABLE
TmeE SpaciNne BETWEEN VERICLES (CHI-SQUARE TEST)

Freqguency Distribution of Time Spacings Between Vehicles on a Two-Lane Highway (Routes
U.S. 50 and 240 in Maryland). Data Furnished by Public U.S. Roads Administration.
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lane that are used in passing. We shall now check the goodness of
fit of the time spacing distribution to the Poisson Curve. The data,
were taken on Route U.S. 240, Maryland, and were furnished by
the Public Roads Administration. The Chi-square test will be used.

According to thismethod as shown inTable V.3., it is immediately
evident that there is a wide discrepancy between the actual and
the theoretical frequencies. The probability level is practically zero.

If the distribution of time gaps between vehicles is not a Poisson
series, what is it ? To determine this, let us re-examine the nature
of the Poisson series when applied to spacing distribution.

The probability of the occurrence of a time or distance gap of a
given length is the probability that no vehicle will appear in the
given interval.

For example, given a volume of 400 vehicles per hour, let it be
required to determine the probability “P,” of a one second interval
having no vehicle. The average number of vehicles per second “m”
is equal to 9/, = ¥ ; therefore, the probability of a one second
interval having no vehicle is equal to

eM|__ |J—e5|—
0! 0!
mP°
= e, since (a)= +=1

The probability of no vehicle appearing in 2 seconds is e~3, and
in 3 seconds e~3. In general, the probability P, of there being no

vehicles in “s” seconds is equal to e-m., This equation is of the
general form of
y=e*
which may be written
log,y =x

therefore the equation when plotted on semilog-paper becomes a
straight line. The exponent, -m, means that the slope of the line
is negative.

For plotting on semi-log paper we first arrange the data, as
shown in the cumulative Table V.4. where the percentages of
spacings equal to or less than a given interval are tabulated.
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Table V.4

Frrring or PoissoNn CURVE
ExrEcTED ERROR METHOD

, Class Cumulated Hwpected Ezxpected
Class interval Cumulated | error or .
in seconds frequency | frequency per cent natural error wn
) (o) wncertainty| P cent
0-.9 78 78 10.8 8.28 1.26
1-1.9 207 285 43.2 12.72 1.93
2-2.9 94 379 57.4 12.72 1.93
3-3.9 58 437 66.2 12.15 1.84
4-4.9 24 461 69.8 11.79 1.79
5-5.9 17 478 72.4 11.5 1.74
6—6.9 23 501 75.9 10.9 1.65
7-7.9 11 512 77.6 10.8 1.64
8-9.9 18 530 80.3 10.2 1.55
10-11.9 23 5563 83.8 9.4 1.42
12-13.9 20 573 86.8 8.7 1.32
14-15.9 16 589 89.2 8.0 1.21
16-17.9 7 596 90.3 7.5 1.14
18-19.9 6 602 91.2 7.3 1.11
20-21.9 4 606 91.8 7.0 1.06
22-23.9 6 612 92.7 6.7 1.02
24-25.9 6 618 93.6 6.21 .94
26-30.9 10 628 95.1 5.47 .83
31-35.9 11 639 96.8 4.52 .68
36-40.9 8 647 98.0 3.89 .59
41-45.9 6 653 98.9 2.56 .39
46-50.9 1 654 99.1 2.56 .39
51-55.9 4 658 99.7 1.40 21
56—60.9 0 658 99.7 1.40 21
61-70.9 1 659 99.8 1.15 17
71-80.9 1 660 100. 0 0
Mean = 4346.0 = 6.585
66

These percentages are represented by the heavy dots which fall in
an irregular line as shown in Fig. V.6. This is to be expected for
unless a sample is very large there is always a ‘‘natural uncertainty”
or difference between the sample values and those of the universe.
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A fair measure of this uncertainty is the standard deviation of a
class or sample. The formula for this natural uncertainty is

Z=V z fo(l——f—o)
n—1 n

where n equals the total number of happenings recorded, and f,
equals the accumulated frequency. Since n in the present case is

660, is so nearly equal to 1 that it may be omitted and the

i
Z= fo(l—l—f)

An examination of this formula shows that the uncertainty
depends upon the size of the sample and not upon the size of the
universe. It may seem a little paradoxical that a 20 per cent sample
may be no more representative of the universe than a 10 per cent
sample. If, however, we recall that the size of the universe may be
considered to be infinite, and thisis practically true of traffic, then
no sample is any nearer than any other to including all the uni-
verse. With this in mind it is entirely logical that the size of the
universe does not appear in the formula for the measure of uncer-
tainty.

If we could draw a line through the plotted points and stay
within the natural uncertainty range we could conclude that the
data could be represented by a straight line. But this is not the
case as can be seen in Figure V.6., so it must be that the distribu-
tion of spacings is not the special case of the Poisson series which
may be represented by the curve e-m,

It appears, however, that the data can be closely represented by
two straight lines. This implies that there may be two distribu-
tions, one for spacings less than about 4 seconds and another for
spacings of more than that and that each is “random” in the
limited case.

If we take the class intervals equal to 5 seconds in order to
smooth the curve we obtain the points shown in Figure V.7. which
is approximately a straight line. This indicates that if we are not

n—1
equation becomes:
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concerned with spacings of less than 5 seconds that the straight
line represents the distribution of the spacings closely enough for
approximate analysis.

V. 13. Minimum Spacing. For what is believed to be the first indi-
cation that minimum spacing distributions might be different from
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those at greater distances, we refer to a study made in Ohio in
1934.5 The cumulative frequency curve shown in Figure V.8. is
plotted from data collected at that time. The spacings, center to
center of vehicles, are in feet.
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CumurATIVE FREQUENCY CURVE
OF SPACINGS BETWEEN SUCCESSIVE VEHICLES

It is indicated that the minimum spacing distribution is random
and that it extends from about 30 feet to 200 feet. Evidently
there are few, if any, spacings below 30 feet, and beyond 200 feet
there is another random distribution different from that below
200 feet. This may be interpreted to mean that the distribution at
less than 200 feet varies in accordance with the reaction-perception
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time of the driver and his judgment of what constitutes a safe
distance. Beyond 200 feet, the spacing may be judged to be in
accordance with the chance placement of the vehicles on the high-
way. If the observed results are compared with the theoretical
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CuMULATIVE FREQUENCY CURVE OF SPACINGS BETWEEN SUCCES-
SIVE VEHICLES FOR VARIOUS TRAFFIC VOLUMES ON A TYPICAL
2-LLaANE RUuraL HicHEWAY

curve, it is found that the deviations from the random distribution
are accounted for by there being:

(a) No spacings below 30 feet.

(b) An excess of spacings between 30 and 200 feet.

(c) A deficit of spacings in excess of 200 feet.
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These discrepencies are logical, for the minimum spacing, center
to center of vehicles, is limited by the length of the vehicles and
because vehicles, closing up behind slower vehicles must wait for
an opportunity to pass, create a preponderance of the smaller spac-
ings.

If the spacing of about 200 feet is divided by the average speed
of 34.1 miles per hour we obtain about 4 seconds as the limit of the
zone of speeds reduced by the presence of other vehicles. These
data from two locations, would not be supposed to give a conclusive
answer.

For more extensive data, let us turn to Figure 9, page 40 of the
Capacity Manual. These data replotted as nearly as is possible
from the printed curves are shown in Figure V.9. They are in time
spacings and the breaks in the curves seem to come between five
and six seconds.

Theoretically, if the lines had no breaks there would be no inter-
ference, and if all vehicles were restricted there would be no breaks.
These conditions were found and reported in the earlier paper re-
ferred to. To find the average of the “influenced” spacings we first
make the reasonable assumption from the graphs that practically
no spacings are under 1/, second or over 6 seconds, and draw a line
between these points as in Figure V.10. This line then represents a
random distribution of “influenced” spacings.

The next step is to let 8 = m, where m is the average spacing.
Now the expression

—8
100 (e"f)z 100 (e 1) = 0.368 = 36.89,

so that the average would be at point 36.8 per cent and would equal
about 1.7 seconds. At this average “random” spacing all vehicles
would be travelling at a restricted speed due to the closeness of
spacing between vehicles.

V.14. The Minimum Spacing of Four-Lane Traffic: Traffic on &
four-lane highway does not have the same spacing restrictions as a
two-lane roadway. Vehicles are free to weave into the adjoining
lane. When the curves shown in Figure 10, page 41 of the Capacity
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Manual are replotted as shown in Figure V.11., the resulting
curves show no breaks. The distribution of timespacings is evident-
ly random throughout.

V.15. Frequency Distribution of Speeds: Having determined the
characteristics of the spacing distributions, the next step is that
of determining the nature of the distribution of automobile speeds.
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Table V.5

CALOULATION OF STANDARD DEVIATION
oF DISTRIBUTION OF VEHICLE SPEEDS

175

1 2 3 4 5
Speed in Observed no. | Deviation in £ d £ Qe
Miles per hour | of speeds = £, | class Intervals 0 °

20.6

25.4 5 —4 —20 80

25.6

30.4 7 —3 —21 63

30.6

35.4 19 —2 — 38 76

35.6 23 1 23 23

40.4 - -

40.6 1 0 0 0

45.4 3

45.6

50.4 15 1 15 15

50.6

55.4 12 2 24 48

55.6

60.4 5 3 16 45

60.6

65.4 1 4 4 16

— 44 366
Arithmetic Mean = X = 40.8 miles per hour
£, (d? f,d\2
o= S =5 VZ 0( ) . Z 0
N N

366

=50} ——
100

100

(— 44

;

= 5.0 }/(3.66 — .1936)

= 5/(3.4664)

= 5(1.862) = 9.31
= standard deviation



Table V. 6.

Frrring oF NormAL CURVE TO DistrisuTioN oF VEHICLE SPEEDS CBI-SQUARE METHOD
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954 23 5 —20.2 | —2.17 48.50 3.65 3.65 l
25'6 ’ 12.29 | —.29 .084 .007
30.4 28 7 —15.2 | —1.63 44.85 8.64 8.64
30.6
35.4 33 19 —10.2 | —1.09 36.21 | 14.98 | 14.98 4.02 | 16.160 | 1.079
35.6
404 38 23 —52 | —.56 21.23 | 20.43 | 20.43 2.57 | 6.605 .323
40.6 — 2 —.02 .8
454 43 13 148 | 4 .49 1875 | 1985 | 19.55 —6.55 | 42.902 | 2.194
45.6
50.4 48 15 9.6 1.03 34.86 | 16.10 | 16.10 —1.1 1.21 075
50.6
5.4 53 12 14.6 1.57 44,18 | . 9.33 9.33 2.67 | 7.129 764
55.6
60.4 58 5 19.6 2.11 48.26 4.08 4.08
0.6 5.41 .59 .348 ..064
65.4 63 1 24.6 2.64 49.59 1.33 1.33

Average Mean speed = 40.8 miles per hour y2=4.506 N = 7 classes 7 — 3 = 4 degrees of freedom ¢ = 8 = 9.31
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It has been found that this distribution closely follows the
“normal curve.” Again as in the two previous examples of “ran-
dom” distribution, the usual method of making a test of the good-
ness of fit is the Chi-Square ()2) test. For the sake of simplicity,
let us take a small sample of 100 recorded speeds. The area method
of fitting a normal curve to the observed distribution will be used.
The area included within any number of standard deviations may
be obtained from prepared tables of areas of the normal curve. The
calculation of the standard deviation is shown in Table V.5.

The steps in the calculation are arranged as shown in Table V.6.,
with the data in the respective columns consisting of the following:

(1) The speeds in class intervals of 5 miles per hour.

(2) The mid-points of the classes.

(3) The number of speeds recorded, i. e. the frequency f,.

(4) The deviations of the class limits from the arithmetic mean.

(6) The deviations from the mean in terms of standard devia-
tions. This column is obtained by dividing the numbers in
column 4 by the standard deviation.

(6) Per cent of the area between the class limit and the mean.
This is obtained from an area table of the normal distribu-
tion.

(7) Per cent of area in class interval. This is obtained by sub-
tracting successively the numbers in column 6.

(8) The theoretical frequency f; is obtained by multiplying the
per cent of area in each class interval by the total number
of speeds observed. This equals 100 in the present case.

(9) This column gives the difference between the observed fre-
quency f, (column 3) and the theoretical frequency f:
(column 8).

(10) This column is obtained by squaring the items in column 9.
(11) The sum of the items in this column equals »2. This is the
value we use with the Chi-square table.

In using the chi-square table we need to know the degrees of
freedom. In fitting a normal distribution three degrees of freedom
are lost (or three constraints are imposed) because (1) the total
frequency, (2) the arithmetic mean, and (3) the value of the
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standard deviation are used in computing the normal frequencies.
The possible number of degrees of freedom is equal to the number
of class intervals, 7 in this case. Therefore, 7 — 3 = 4, the degrees
of freedom in the given example.

We find from the Chi-square table that the probability level is
more than 5 per cent which means that in more than 5 times out
of 100 the sample could have come from the universe tested. This
level of 5 per cent is taken to mean that there is not sufficient evi-
dence to reject the hypothesis that the data can be represented by
a normal curve. In the present case the probability is more than
.30 which means that a variation as great as the amount found
might oceur in 30 cases out of 100 due to chance. Therefore it is
not to be considered as significant.

V.16. A Graphical Method of Determining Goodness of Fit. Another
means of determining whether the distribution is normal or not is
to plot the percentage of speeds at or less than various speeds on
arithmetic probability paper. If the distribution is “normal” the
observed data will be represented by a straight line. In such a case,
due to symmetry the speed given by the intersection of the straight
line with the 50 per cent ordinate is the most frequent and average
speed, as well as the median. The usual definitions become:

Mean Average Speed = arithmetical mean of all speeds — also
called probable or expected speed.

Median Speed = speed such that 50 per cent of the speeds are
greater, and 50 per cent less.

Modal Speed = the most frequently occurring speed.

The data utilized are the numbers of cars with speeds equal to or
less than a given series of equally spaced values. The same data will
be used as in the first illustration. It is shown in Table V.7.

The points listed in Table V.7. are plotted in Figure V.12, It
will be seen that they fall in rather irregular fashion, and that at
first glance; the position of the 63.5 mile per hour point appears to
preclude the possibility of drawing a satisfactory straight line.
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Table V.7
Speed in Miles Cumulated Percent Equal Natur'al
Per Hour Froquency to or Slower Uncertainty
() @n Percent
20.5 0 o =
2.5 5 5 2.18
30.5 12 12 3.24
35.5 31 31 4.62
40.5 54 54 4.97
45.5 67 67 4.70
50.5 82 82 3.84
55.5 94 94 2.37
60-5 99 99 0.99
63.5 100 100 0.0
65.5 100 100 0.0
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First, however, it is important to consider the probable amounts
of the “natural uncertainty”. Recall that the natural uncertainty

f
Z =Vfo(l ——0). This natural uncertainty is given for each fre-
n

quency in the last column of the table.

If the percentage of cars travelling slower than a given speed
or equal to it is plotted against speed, the points will fall in an
irregular line. This is to be expected, particularly when the number
of cars represented in one diagram is only 100. If counts are made
a number of times under precisely the same conditions of traffic,
the percentage traveling faster than, say 40 miles per hour, will
never be exactly the same, except by chance. There will be a
certain dispersion around the average value for several groups of
100 cars. This we have already referred to in article V.12. as a
“natural uncertainty”’.

Through each plotted point, a horizontal line is drawn represent-
ing the allowed 4- range in the value of f;. It is then permissible
to draw a smoothed curve in such a way that it passes through all
the horizontal lines, attempting to draw it so that the sum of the
deviations from the actually counted values shall be equal.

In the present case, a straight line satisfies all but the 63.5 mile
per hour point. In the preceeding formula, f; should really be the
mean number of cars with velocity equal to or less than the given
amount, found from a great number of sets of 100 cars under the
same traffic conditions. In such cases, it is fair to suppose that an
occasional car traveling faster than 63.5 miles per hour would be
found. Then the actual percentage slower than 63.5 would be
slightly less than 100. If, for example, it were 99.5, the natural un-
certainty would then be + 0.7, and the point and the dotted line
would give the result. In this case, it is evident that the straight
line can be passed through all the horizontal lines. This means
principally, that the points given by the higher speeds are too
erratic and sensitive to accidental fluctuations to be given much
weight in drawing of the curve. Probably all points for percentages
less than 2 and greater than 98 should be ignored in drawing the
curve.
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That the “normal” dispersion pattern describes the speed range
is demonstrated if we replot some of the speed curves shown in
Figure 5 of the Capacity Manual. These curves plotted on arith-
metic probability paper are very nearly straight lines as shown in
Figure V.13., where the distributions for traffic volumes of 600,
1200, and 1800 vehicles per hour are given.
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Judging from these examples it may be assumed that a straight
line will satisfy the data and that the ‘“‘smoothed” values read
from the curve may be used in analysis.

V. 17. Estimating Speeds and Volumes. Having determined the free
speed distribution on a highway, it is possible to estimate the
speed at greater traffic volumes.
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The first step is to find the average difference in speed between
the vehicles being passed and the passing vehicles. The rate at
which the faster vehicles are overtaking the slower ones can be
found from a speed distribution curve.® Such a curve is shown in
Figure V.14. as replotted from Figure 4, page 30, of the Capacity
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_Manual. Tt is evident that there are just as many vehicles travel-
ing above the average (or 50 percentile speed) as below it. The
average speed differential is the difference between the average
speed of the 50 per cent faster vehicles and the 50 per cent slower
vehicles. The average of the 50 per cent faster vehicles comes at the
78.75 percentile, and the average of the 50 per cent slower vehicles
comes at the 21.25 percentile.®™

(a) In a study of passing made in 19358, it was found that vehicles in
the act of passing other slower vehicles were traveling 9 to 10 miles per
hour faster. The Cupacity Manual gives 9.6 miles as the average passing
speed differential. (Footnote continued on p. 183).

(b) This can be proved as follows: Let Figure V. 15 represent the same
curve as Figure V. 14., but plotted on linear cross section paper.
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The average speed of the faster vehicles equals 47.5 miles per
hour and the average for the slower ones is 37.5 miles per hour, so
that the average difference is 10 miles per hour.

Ficure V.15

DETERMINATION OF THE MEAN ABscIissA OoF THE UrPER HALF OF
THE NORMAL DISTRIBUTION CURVE AND THE AREA TO THE RicHT
OF THIS ABSCISSA

Required: To find (1) the mean abscissa of the upper half of the normal
distribution curve, and (2) the area to the right of this abscissa.

—_ d: 0
X———J:Xy X=2f xydx
0

- __—-J:my ~

2 [ x2
xe 2o dx
2ro, )

2
= V: 6, which is about = .798 ¢.
T

From a table of areas under the normal curve, the area to the right of
.798 ¢ is .2125, or 21.25 per cent of the total area. In other words, 21.259,
of the speeds will exceed the average of all the speeds higher than the
average speed. Similarly, because of symmetry, 21.259%, of the speeds less
than the average will be less than the average of all the speeds lower than
the average speed.



184 STATISTICS AND HIGHWAY TRAFFIC ANALYSIS

Having found the average speed differential we next find the
percentage of spaces either large enough or too small to permit
passing,

Assume for example that a two lane road is carrying 800 vehicles
per hour and that the distribution of time spaces is random with

, 3600 ,
the average spacing m = 00 = 9 seconds, (since there are
400 vehicles passing a point every hour in one direction or every
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3600 seconds) and that the minimum spacing is 1/, second. The
curve for the distribution is shown in Figure V.16.

With 10 seconds as the average time required for passing we find
from curve V.16. that 67 per cent of the spaces are too small for
passing. This means that 67 per cent of the time a driver on this
highway could not pass because of vehicles on the opposite lane.

This concept becomes clear if we keep in mind that at any
instant the chance of there being a space of less than 10 seconds
of free space on the opposite lane is equal to the percentage of the
total spaces that are less than 10 seconds. In this sense the size of
the time-gap has nothing to do with the chance of its being oppo-
site the driver at any particular instant. It is only the frequency of
the occurrence of the space that determines the probability of its
happening in so far as passing is concerned. This reasoning be-
comes clearer if we remember that a space even if large is usually
used for only one passing. For example 6 time spaces might occupy
50 seconds with one equal to 10 seconds to permit one passing or
one of the spaces might be 25 seconds and still permit only one
passing during the 50 seconds. (See Article V.23 for mathematical
solution.)

If a driver is not to be retarded, he must every time he approaches
a vehicle ahead, immediately pass the leading vehicle. If his speed
is on the average 10 miles an hour faster, then that per cent of the
time he cannot pass is the per cent of the 10 miles per hour differ-
ence that he must lose. In the present instance he would lose 67 per
cent of 10 miles per hour or 6.7 miles per hour. Subtracting this
from the 43 miles per hour average speed gives 36.3 miles per hour
as the estimated average speed if the volume is 800 vehicles per
hour for two lanes. This very nearly equals the observed speed of
36 miles per hour as shown in the lower curve, Figure 5, page 31,
of the Capacity Manual. This result would indicate that this method
of estimating is accurate enough to give good design figures. As a
further check let us estimate the speed for 1200 vehicles per hour
for two lanes. From the curve shown in Figure V.17. we find that
vehicles are prevented from passing for 83 per cent of the time.

The speed drop is thus 83 per cent of 10 miles per hour = 8.3
miles per hour. Subtracting this from 43 = 34.7. This is more than
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the observed results of about 32 miles per hour shown in Figure 5,
page 31, of the Manual.

This lack of agreement needs to be examined to see if there is an
explanation. According to the theory just advanced the speed drop
due to inability to pass cannot exceed the average speed differential.
How can we account for a speed drop greater than this ? The logical
conclusion is that a further speed drop is not due to an inability to
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pass but to some other cause. If we recall that there is a speed drop
directly proportional to spacing the reason for the further speed
loss becomes clear. With a volume of 1200 vehicles per hour, a
high percentage of vehicles are traveling in the six second zone of
mutual interference and are slowed because they are too close to-
gether rather than because of an inability to pass.

V. 18. Estimate of Size Gap Required for Weaving. It is impossible to
estimate the speed drop for a given increase in volume on a four-
lane road without knowing the time-gap required for weaving. But
since the speed drop has been measured, it is possible, by reversing
the method just explained, to estimate the time-gap for weaving.

From Figure 46, page 122, of the Capacity Manual, we find that
at 1700 vehicles per hour, the distribution between lanes is equal.
The speed on both lanes at this point should be the same. Referring
to Figure 7, page 33, of the Capacity Manual, the speed at a flow of
1700 vehicles per hour is about 41 miles per hour. This is a drop of 7
miles per hour. Since the average speed differential is 8.8 miles per
hour, in order for a speed decrease of 7 miles per hour to take place,

7
on the average each car driver would be retarded 55 =79.5per cent

of the time. This means that 79.5 per cent of the spaces on the
adjoining lane are too small to permit weaving. From Figure 10,
page 41, of the Capacity Manual, we find that the intersection of
the 1700 vehicles per hour abscissa and the 79.5 per cent ordinate
gives 3 seconds as about the time-gap required for weaving. This
time-gap compares very closely indeed with the average weaving
gap of 3 seconds as found by Wynn and Gourlay?°.

V. 19. Physical Features of Highway: Effect on T'raffic Flow. Having
discussed the interrelationships of the characteristics of flow, un-
interrupted except by other traffic, the next step is to find what
happens if the flow is slowed or interrupted by physical features of
the highway. Let us first direct our attention to a location where
passing is prohibited. This occurs in mountainous or hilly country
where grades or restricted sight distances prevent passing.

For this problem assume that the average speed differential is
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9 miles per hour and that it is required to estimate the time loss
due to a stretch of highway where passing cannot take place for
one half of the time. Let us further assume that the volume
is 600 vehicles per hour. Reasoning as before, that a driver in order
not to lose speed must be able to pass as soon as he approaches
behind a slower vehicle, we conclude that for one half of the time
he must sacrifice the speed differential between his own speed and
that of the slower vehicle. Thus if the average speed differential is
9 miles per hour the speed loss in this case would be 1 X 9 = 4.5
miles per hour. To this loss must be added the loss due to an ina-
bility to pass because of vehicles on the opposite lane. Proceding
as before, for a volume of 600 vehicles per hour we find 17 per
cent of the spaces are greater than the 10 seconds required for
passing. This means that for 83 per cent of the time that there
is sufficient sight distance to pass, the passing maneuver is pre-
vented by traffic on the opposite lane. The additional speed loss
is 0.83 X 4.5 = 3.75. Therefore, the total speed loss is equal to
4.5 4- 3.75 = 8.25 miles per hour.

V. 20. Crossing Streams of Traffic. The capacity of a highway or
street is limited by delays at intersections. The basic condition, but
not the simplest to analyze, may be thought of as the intersecting of
2 two-lane roads without any traffic control”’. Each vehicle under
such a condition crosses during a gap in the opposing stream of
vehicles. The average minimum acceptable time gap has been
measured and found to range from 4.6 to 6 seconds depending
upon the type of intersection with the average being 4.8 seconds!!.
Mzr. Raff calls this “minimum acceptable time-gap” a critical lag
and correctly defines it as the size lag which has the property that
the number of accepted lags shorter than L, the critical lag, is the
same as the number of rejected lags longer than L. In other words,
the acceptable time gap is just as likely to be accepted as it is to
be rejected. The probability that it will be accepted is thus equal
to 3.

The chances of any single vehicle being delayed at an inter-
section can be deduced in the same manner as the delay in passing
by saying that the chance of crossing depends upon the probability
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of there being a time-gap of sufficient size at the instant the ve-
hicle approaches the crossing. This probability depends upon the
relative frequency of gaps and not upon their size. Thus if 75 per
cent of the gaps are as large or larger than required for crossing,
then the chance of being able to cross without delay is 75 per cent,
and the chance of being delayed is 25 per cent. With this reasoning,
and recalling the exponential law of distribution of time-gaps, the
probability of being delayed would be

(1 —em) = (1 —e™m) X 100 in per cent
The probability of not being delayed would equal
e m = (em} X 100 in per cent

where m is the average size of time-gap on the street being crossed.

This reasoning applies to single or “first-in-line’” vehicles for a
next-in-line vehicle has to wait for the first vehicle to clear and
hence is delayed a longer time, or looking at it in a different way,
has a greater chance of being delayed. This question of added delay
will be considered later in Art. V.25. For an illustration let the
traffic on the main highway be 400 vehicles per hour. The fact
that it is moving in two directions is immaterial. For our purpose
it may be considered to all be in one direction. The average spacing

3600
between vehicles on the main highway will be 200 = 9 seconds.

Since there are practically no spacings below 1/, second the dis-
tribution of spacings will be approximately that shown in Figure
V.16. Recall that the average is at point .368 on the per cent or-
dinate. This curve shows that 52 per cent of the spaces are greater
than 6 seconds and 48 per cent smaller.

V.21. Mathematical Determination of Vehicle Delay Time. The
problem of determining the proportion of time that a vehicle is de-
layed may be approached by a more rigorous mathematical ana-
lysis. This problem along with other related problems has been
solved by Mr. W. F. Adams in examples worked out in connection
with his paper, “Road Traffic Considered as a Random Series.””??
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The proportion of time occupied by intervals greater than ¢
seconds, according to Mr. Adams, is

e~ NNt -+ 1) V.21.1.

wherein N equals vehicles per second. The proof is as follows:
Consider the intervals of lengths lying between ¢ and ¢ -+ df, and

for the moment assume we are dealing with a period of one hour.
In one hour the expected number of intervals greater than ¢ is,

Te~ Nt

T = vehicles per hour. This is basically the same as the formula,

8
100 e ¥, but with different notation.

Similarly, the expected number of intervals greater than ¢ -- d¢
is
Te~N (6 + dt) __ M- (Nt + Nat)
= Te~N* =N by the rule for addition of indices.
The number of intervals of lengths between ¢ and ¢ - dt is
— Te~Nt_ o~ Nte=Ndt _ e-Ny(] _ ¢- Nat)
Expanding e~ ¥ in terms of Ndt,
= Te™(1—1 + Ndt — N2dt?/2! + N3dt3/3!....)
= Te~ "Ndt. Omitting terms in dt? and higher powers,
= TNeMdt
To the first order of small quantities, the length of all such

intervals may be taken as .
The time occupied by these intervals is therefore

TNte~Ntdt seconds

The time occupied by all intervals greater than ¢ during one
hour is found by integrating this expression between limits ¢ and
infinity,

S N f te” Ntdt
t

Integrating by parts, fudv = uv — f vdu
Put u=+t, du=dt, and dv=e"™dt so that
ve= fe“mdt = - e VN
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. The above expression then becomes
TN [ te”™/N + fe-Ntdt/N]‘f = TN [— te”™/N — o N2 |7

Both terms are zero when # is infinite, so that the number of
seconds occupied by intervals over ¢ seconds during one hour be-
comes

TN (te”¥/N + ¢ NYN?) = 3600 N* (te™NYN + e NYN2)
= 3600 ¢ (Nt + 1)

Now the total time considered is 3600 seconds, so that the pro-
portion of time occupied by intervals over ¢ seconds is

e~ NNt + 1)

Conversely, the proportion of time occupied by intervals less
than £ is
1—e NNt + 1) V.21.2.

V. 22. Graphical Method of Determining Proportion of Time Occu-
pied by Time-Gaps of Given Size. The time occupied by time-gaps
larger (or smaller) than any given value may be determined graphi-
cally. This is possible because we know that the average size gap
in any range is always at .368 or the 36.8 percentile point of the
range.

Yor the purpose of demonstration let it be required to find the
proportion of time occupied by time-gaps larger than 6 seconds in
a stream of traffic of 600 vehicles per hour. The average space is

3600
equal to 500 = 6 seconds. This average is at the 36.8 percentile
8

point so we may construct the curve 100e " m which we have
already discussed by selecting several values for S to get values for
-~ (m = 6) to give points on the curve. The curve is shown in

Figure V.20.

gure

The average spacing is 6 seconds at 36.8 percentile point. The
average for the spacings greater than 6 seconds is at the point: 36.8
per cent of 36.8 per cent or 13.5 per cent. The corresponding spacing
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is 12 seconds. Thus, the average of all spacings is 6 seconds and
the average for the spacings above 6 seconds is 12 seconds. There-
fore, the proportion of time occupied by spacings greater than
6 seconds is equal to
36.8 (per cent) X 12
100 (per cent) X 6
= 73.6 per cent

.736
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Using the formula e ™ (Nt + 1); N = 1, t=6:
e M (Nt +1)=e1(1+1)=.368 X 2
— 736 — 73.69,

V.23. The Average Length of All Intervals. The average length of
all intervals greater than t seconds is equal to the total time greater
than t seconds divided by the number of intervals greater than t
seconds, i. e.,

N

Conversely, the average length of interval less than t seconds is
equal to the total time occupied by intervals less than t seconds
divided by the number of intervals of less than t seconds, i. e.,

1—e™ (Nt + 1)
N(1—e™
1 —Nt e Nt— g™t
T N(I—e
1—e N Nte N
TN(l—eM) N(I—e M
1 te™

Nt (Nt 1 1
e__l\%ﬁ_tt‘_) = (_ + t) seconds V.23.1.

Having determined the average length of intervals of less than
t seconds it still remains to be found how much delay these inter-
vals cause. The following solution is given by Mr. Adams:
Solution:

When any pedestrian or driver arrives, he may find

(a) that no vehicle arrives during the next ¢ seconds. The prob-
ability of this is e N and in this case his waiting time is zero.

(b) that a vehicle arrives during the first ¢ seconds, but none
arrives in the ¢ seconds following the arrival of the first
vehicle. The probability of this is (1 —e **) e"%* and the
waiting time is one interval.
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(¢) that the first two intervals after his arrival are each less than
¢ seconds, but the third is greater than ¢. The probability is
(1 —e N2 e ™ and he has to wait for fwo intervals each
less than ¢ seconds.

In similar manner it may be shown that the probability of any
driver or pedestrian having to wait for » intervals each less than ¢
seconds is

(1 _ e-Nt)ne—Nt

The Expectation® of intervals for which the driver or pedestrian

has to wait is given by the series
0™ 1 1(1l—eM)e M2 (1 —e e ...
—eM{1(1—e ™) +2(01—e 2 +3(1 —e N3, ..}
Summing the series in brackets to infinity® the expected number
of intervals becomes
oM (1 —e MY
(e ¥y
] — e~ N
=

The average length of the intervals of less than ¢ seconds as al-
ready found is

V.23.3.

1 te ¢

N 1—e™
The average waiting time will be the product of the expected
number of intervals and the average length of interval
1—e ™ te¥1 oM
~ TNe ™ o N1 — e 1)

seconds.

= — =t V.23.4.

This is the average delay to all driversorpedestrians, whether each
one is delayed or not. However, a proportion e™™* of them find that
the first vehicle does not arrive during the ¢ seconds following their
own arrival, so that this proportion of them is not delayed at all.

(a) The ‘Expectation’ of an event which may at each trial take any one
of & number of possible values is found by multiplying each of the possible
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The proportion delayed is therefore
1 -e™

and the average waiting time of those who suffer delay is

1/Ne™™ _ 1/N —t
1 — e-Nt
1 (1-eT t
T NeM (1—e ) (1_e N
1 t
T Ne ™ 1_e ¥, V.23.6.

Mr. Warren 8. Quimby!? using the formula in a modified form,
gives the delay as

3600 t
Delay = - = - V.23.7.

ve 3600 ] — e 3600

wherein t = acceptable time gap in seconds
v = number of vehicles per lane per hour
e = base of Napierian logarithms = 2.71828.
3600 = number of seconds in one hour.

These delays are for a single vehicle approaching the intersections.
Mr. Quimby gives a comparison of the theoretical delay with the
observed delay in the following table:

values by the probability of its occurrence and summing the resultant
products. It represents the average value to be expected from a large
number of trials (Cf. Footnote b.)

(b) Put (1 —e~Nt) = g and note that a, being a probability, must be less
than 1.

The series then becomes
a+2a’4+3a%+4at+....na f....

The sum to infinity of this series (see Hall and Knight’s “Higher Algebra”
Chap. V., section 60, example 1) is

a/(1—a)? = (1 — o~ Nt)/(e~Nt)2
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Table V.8

CoMPARISON OF THEORETICAL AND FIELD DELAYS
TO FIRST VEHICLE IN LINE

Sample A B C D E F

Theoretical delay, seconds 6.60 | 7.10 | 6.91 | 6.95 | 7.04 | 4.056
Actual delay, seconds 64 (62 |68 |80 |87 (44

For determining the percentage of vehicles delayed, Mr. Quimby
gives the following formula:

Per cent delayed = 1 — e~ "4/3600 4 (1 _ g~ #3600y,
wherein the terms are as already defined with the exception of T
which is the probability of a vehicle arriving in any given time
interval.

Mr. Quimby states that this formula includes a consideration
of both main and side street volumes and this is affected by a
change in the volume on either street.

The following table compares the actual with the theoretical
delay:

Table V.9

CoMPARISON OF THEORETICAL AND FIELD OBSERVATIONS
oF ToraL Trarrio DELAYED

Sample A B C D E F
Main street volume 568, 635 606 608 627 200
Side street volume 110 115/ 116 1231 191 181
Per cent delayed — theory 55.3 | 60.7 | 58.7 | 59.3 | 65.9 | 16.0
Per cent delayed — actual 53.8 | 55.0 | 56.5 | 59.2 | 63.0 | 14.6

Another researcher to use a rational approach to this same
problem is Mr. Morton S. Raff!*.

All cars are not “first-in-line” for often several vehicles are
blocked so that there is a second, a third and so on, position car.
He states that the percentage of vehicles delayed as given by the
formula

P =100 (1 —e ¥%)
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is too small. This formula will again be recognized as the same one
as just discussed but with a different notation. That is NL = Nt.
In this formula N = number of vehicles on main street and L =
the “lag.” In order to take account of this sluggishness, Mr. Raff
modifies the formula and arrives at the following:
e—25N; o2 N }

e 2.6 NS (1 __e-NL)

P= 100{1—
1—

where
P = Percentage of side cars delayed
N = Main Street volume, in cars per second
N, = Side-street volume, in cars per second
L = Critical lag in seconds
e = Base of natural logarithm

Mr. Raff states an examination shows that:

1. The limit of P, as N, approaches zero, is 100 (1 — e~NT),
which is the theoretical formula. In other words, if there are
no side-street cars, there is no sluggishness effect.

2. P always exceeds 100 (1 —e ™), except when N, equals
zero. In other words, the sluggishness effect delays more cars
than would be delayed if it did not exist.

. P is always less than 100 per cent, for any finite volume.

The partial derivatives of P with respect to N, N,, and L are
all positive. This means that an increase in either of the two
volumes or the critical lag causes an increase in the percent-
age of cars delayed, as given by this formula.11

The coefficient of N, has been found from observed delays to give
values close to actual experimental results. For the theoretical
development of the formula see Mr. Raff’s book.

L

V.24. The Signalized Intersection. The signalized intersection pre-
sents a problem that is different from that where there is no con-
trol or only a stop sign. The periods for crossing are at fixed inter-
vals rather than at random as are the openings in an opposing
stream of traffic. Since traffic is naturally distributed hapha-
zardly, it follows that any fixed time signal causes unnecessary de-
lay. The minimum delay follows the shortest timing interval that
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will permit all the waiting vehicles to clear. This fact is easily com-
prehended if we think of a very long timing such as a 30 minute
red followed by a 30 minute green signal. During the 30 minute
green interval on one street there would be no delay but on the
other street all traffic appearing at the intersection during the long
interval would be blocked. The average wait would thus be about
15 minutes. Obviously, as the timing is decreased, the average
waiting time decreases until such time as the traffic fails to clear
during each signal change.

The two fundamental problems in signal control therefore are (1)
finding the shortest timing that will not cause excessive failures to
clear the waiting traffic and (2) determining the delay caused by
the fixed timing.

Perhaps the method of determining the chances of signal failures
to clear traffic may most easily be explained by means of an illus-
trative solution.”

Let it be required to find the probability of the cycle failure for
395 vehicles per hour on each lane with a 20 second green and a
20 second red signal cycle. Since observations have shown that
usually slightly more than 20 seconds are required after the light
changes to green for seven vehicles to enter the intersection, it
will be assumed that the cycle will fail whenever seven or more
vehicles appear in 40 seconds. 40 X 395

The average number of vehicles appearing in 40 sec. = 2800

—4-4 — m. With this value of m, the probability of seven or more
vehicles appearing in 40 sec. (found from table) equals 15.63 per
cent. Therefore, the traffic signal will fail to clear the waiting
traffic 15.63 per cent of the time.

If it is desired to reduce the per cent of failures to say 5 per
cent, it is only necessary to try a longer cycle. Two or three trials
will usually give a result sufficiently close. The method is one of
cut and try.

(a) This treatment of the signalized intersection is abstracted from:
“Application of Statistical Sampling Methods to Traffic Performance
at Urban Intersections” by Bruce D. Greenshields, (Proceedings of the
Twenty-Sixth Annual Meeting), The Highway Research Board, December,
1946, pp. 377-389.
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For a second trial, let us try a 25 second green — 25 second red
cycle. The average number of vehicles appearing during the cycle

50 X 395
of 50 seconds is %Oﬁ = 5.5 m. Since 10 vehicles will cause a
failure, the percentage of the time that 10 or more will appear is
read from the Poisson Table as .0537 or 5.37 per cent.

This is nearly the desired answer and serves to illustrate the pro-
cedure. If a more accurate result is wanted, another trial could be
made.

Any signal failure will affect the chances of a succeeding failure
since there will be vehicles left over from the first cycle. In the
present example with a 20-20 signal, the second signal will fail if:

1. Seven vehicles arrive during the first and six or more during
the second cycle.

2. Eight vehicles arrive during the first and five or more during
the second cycle.

3. Nine vehicles arrive during the first and four or more during
the second cycle.

4. Ten vehicles arrive during the first and three or more during
the second cycle.

5. Eleven vehicles arrive during the first and two or more during
the second cycle.

6. Twelve vehicles arrive during the first and one or more
during the second cycle.

If the probabilities of the arrivals of the vehicles, as found in the
Poisson tables, are multiplied together and added to give the total
probability, the result is as follows:

1. .0778 x .2800 = .02178
2. .0428 X .4488 = .01921
3. .0209 X .6405 = .01338
4. .0092 x .8149 = .00750
5. .0037 X .9337 = .00345
6. .0013 X .9877 = .00128

.06660
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This means that two signals will fail in succession. 6.66 per cent
of the time. In order to have three successive failures, there would
need to be:

Thirteen vehicles in the first two cycles and six or more in the
third,

Fourteen vehicles in the first two cycles and five or more in
the third,

Fifteen vehicles in the first two cycles and four or more in the
third, ete.

with the added condition that there be seven or more in the first
cycle. While it is possible as just shown to compute the probabilities
for these, it is cumbrous. Therefore a much less tedious method
that gives results that agree closely with the more exact procedure
will now be described.

In the example just given the two cycles would fail in succession
if 13 or more vehicles appeared during the two cycles, provided
that seven or more appeared in the first cycle.

The average number appearing in two cycles (80 secs.) equals
80 X 395
—————— =88=m.

3600

The probability of 13 or more appearing in the two cycles is
.1102 as found in the Poisson tables (4 places is considered suffi-
cient).

The average flow for the two failing cycles is not eight, the
average flow on the roadway, but ““13 or more vehicles”. If it were
known just how many vehicles “13 or more” amounts to it would
be possible with this value of m to determine the probability of
seven or more vehicles appearing in the first cycle. The next step
is to find the mean value of “13 or more”. Finding the arith-
metical average requires extensive multiplication, but the mean
value can be found very quickly. From the Poisson table it is
found that the probability of :

13 or more vehicles appearing equals 0.1102
14 or more vehicles appearing equals .0642
15 or more vehicles appearing equals .0353
16 or more vehicles appearing equals .0184
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17 or more vehicles appearing equals .0091
18 or more vehicles appearing equals .0043
19 or more vehicles appearing equals .0019
20 or more vehicles appearing equals .0008
The mean of .1102 (the probability of 13 or more vehicles
appearing) is .0551. According to the Poisson table above the
number of vehicles corresponding to .0550 falls between 14 and 15.
The values from the table above are plotted on semi-log paper.
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Note that the points fall on a nearly straight line. This fact makes
it possible to interpolate between 14 and 15. The number of ve-
hicles shown on the abscissa corresponding to 0.0551 is equal to
approximately 14.3 which is the mean of “13 or more” for the two
cycles or approximately 7.15 for one cycle. With this new m the
probability of seven or more vehicles appearing in the first cycle
is equal to 0.5939.
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The probability of the two cycles failing is equal to the probab-
ility of there being 13 or more in the two cycles multiplied by the
probability of there being seven or more in the first cycle or 0.1102
X .5939 = 0.0654. This may be compared with the correct value
of .0666.

The probability of three cycles failing in succession would be
equal to the probability of 19 or more vehicles appearing in three
cycles times the probability of 13 or more in two cycles (with m
equal to 12), times the probability of seven or more in the first cycle.

V. 25. Calculating Delay at Signalized Intersections. It is possible to
calculate the delay at a signalized intersection by first finding the
probability of retarding 1, 2, 3. ...n vehicles, and then computing
the average delay for the first, second, third, ete. vehicles in line.
The theoretical method of doing this is explained in “Traffic Per-
formance at Urban Street Intersections”,” pages 91-94, but the
procedure is too tedious to be practical. A method that is prac-
tical is described in this same reference pages 95-97, and 100.

V. 26. Practical Method for Determining Number of Vehicles Retarded
at the Signalized Intersection: Before determining the delay per
light cycle, it is necessary to ascertain the number of vehicles re-
tarded. The proportion of vehicles retarded is greater than the
proportion of the red signal to the entire cycle, since each re-
tarded vehicle in effect increases the blocking period. The exact
extent to which this occurs has been measured.

For the first vehicle to arrive at the intersection the potential
blocking period is equal to the red interval R of the signal, though
it may not experience the full potential if it arrives after the be-
ginning of the red interval. The second vehicle, if it is not stopped,
may not follow closer on the average than 1.7 seconds behind the
first vehicle which enters 3.8 seconds after the light changes to
green. The blocking period for the second vehicle therefore is

R + 3.8 + 1.7=R + 5.5 seconds.

The second vehicle enters 3.1 seconds after the first, so that the

potential blocking period for the third vehicle becomes
R + 3.8+ 3.1+ 1.7=R -} 8.6 seconds.
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Similarly the potential blocking period for the fourth vehicle
equals R +38.8+3.1+2.7+4+1.7=R + 11.3 seconds

In general, the potential blocking period is obtained by adding
to the signal interval the additional delay interval caused by the
preceding vehicles plus 1.7 séconds.

The additional blocking periods created when various number of
vehicles are retarded is shown in Figure V.22 taken from page 96
of Traffic Performance at Urban Street Intersections.”

As anillustrative example, let it be required to find the average
number of vehicles retarded for a traffic volume of 228 vehicles per
hour on a single lane with the signal set for 30 second go and 20
second stop. The average number of vehicles arriving during the
20 second red period is 1.27 vehicles [(20 X 228)/3600]. (This
might be approximately one for each of three cycles and two for
the fourth cycle.) As explained, these 1.27 vehicles tend to in-
crease the effective length of the red signal. Reference to Figure
V.22. shows that 1.27 vehicles increase the blocking period by
about 6.4 seconds. The blocking period may now be considered to
be 26.4 seconds (20 + 6.4). A 26.4 second blocking period, how-
ever, will retard about 1.67 vehicles, [(26.4 X 228)/3600].

The increase of the blocking period due to 1.67 vehicles is 7.7
seconds and the blocking period is nowestimated to be 27.7 seconds.
During the 27.7 seconds of blocking period 1.75 vehicles will be
retarded to increase the estimate of the blocking period to 27.95
seconds. By further successive approximation, the number of ve-
hicles retarded can be obtained with any degree of accuracy de-
sired. This information may be shown in tabular form:

Table V.10. AVERAGE NUMBER oF VEHICLES STOPPED WITH 228
VerICLES PER HOUR PER LANE AND 20 SEcoND RED PERIOD

Length of Average No. of
Blocking Period " Vehicles Retarded
1st Approximation 20  seconds 1.27
2nd » 26.4 ” 1.67
3rd » 27.7 » 1.75
4th » 27.95 ” 1.77
5th » 28 » 1.77
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For this particular example it seems sufficiently accurate to use an
average of 1.77 vehicles per red signal. This shows that with a
volume of 228 vehicles per hour per lane a 20 second red interval
becomes, in effect, a 28 second blocking period.

V. 27. The Average Arrival Method of Determining Delay. A practical
method of calculating the time loss for a given number of vehicles
stopped is based upon an assumption as to the arrival time of the
first vehicle. The method may be illustrated as follows:

Let the red interval be 30 seconds. It is assumed that the first
vehicle will arrive on the average at the mid-point, wait 15 seconds,
and it will lose 3.8 seconds in entering the intersection. To this is
added another two seconds lost in accelerating to a speed of
15 miles an hour, giving a total loss of 20.8 seconds. (The accelera-
tion loss would be greater for higher speeds). The total loss (using
symbols) is

R
—§+3.8+a

wherein R equals the red interval and a the acceleration loss for
a given normal traveling speed. The second vehicle arrives on the
average at the mid-point of the stop period of R + 5.5, and leaves
at R + 6.9. The time loss is equal to

R .
®+55)

R +69— 1 = 20.15 seconds

wherein 1is a the acceleration loss.
The loss for the third vehicle is:

. d 41,
R+38+31+17)

R 496 — 5
= 39.6 — (80 + 3.8 “; 3.1 +1.7) + 1 = 21.3 seconds
The loss for the fourth vehicle is:
R+ 12— (_I_%—}—_Qﬁ_—{:l_’?) = 21.35 seconds.

No acceleration loss is added for the fourth vehicle since it has
reached normal speed by the time it enters the intersection.
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By following this method the delay for any number of vehicles
retarded may be calculated, but it is only the method that is of
interest to us here. According to the reference just mentioned the
observed delay agrees very closely with that calculated. The delay
occurring in traffic with various proportions of trucks, street cars,
and other types of vehicles needs to be observed to obtain more
accurate and representative field constants.

V.28. Rare Events (Accidents). There are many events in traffic
that are comparatively rare. This is particularly true of certain
types of accidents. Taken as a whole, traffic accidents exact a
high toll in lives and property but the average driver is rarely
involved in a serious mishap. Problems involving rare events may
be analyzed by the Poisson distribution which is also known as the
law of small chances.

One study that made use of the law was conducted by Dr. H.M.
Johnson!4, He examined the accident histories of 29,531 Connecti-

Table V.11
ActUuAlL AND EXPECTED DISTRIBUTION OF ACCIDENTS, INCLUDING
CASUALTIES AND PROPERTY DAMAGE EXCEEDING $25, REPORTED
70 THE CoMMISSIONER OF Moror VEHICLES oF CONNECTICUT,
1931-36, 1N A LicENSED DRIVER SAMPLE SELECTED AT Rawpowm.

Accidents per Operators having these accidents
operator during Actual Eapected .
experience number number Drifference
1 23,881 23,234 647
. 4,503 5,572 —1,069
2 936 668 268
2 160 53 107
O 33
L 14
L 3 4 47
A 1
Totals...... 29,531 29,531 0

Note: The probability that the differences between the actual and expected distribution®

B due to chance = 1.8 (10)-*, which is insignificant.
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cut drivers selected at random, each of whom had been licensed for
the period 1931-1936.

Among these 29,531 drivers there accrued 7,082 accidents which
involved 5,650 operators, Mr. Johnson found that the accidents
were not distributed among the drivers according to the law of
chances for which the sole parameter is the rate per operator. He,
therefore, concluded that some operators were accident prone for
some reason that could only be determined experimentally.

The table shows the actual accidents, the expected number as
calculated from the Poisson distribution and the difference be-
tween the theoretical and the actual number.

It may be noted that there are more accident-free drivers than
accounted for by the laws of chance and also more repeaters with
a corresponding deficiency of drivers having a moderate accident
rate.

Mr. Johnson found among other things, that drivers who were
under 16-20 years old at the beginning of the experience and under
22-27 years old at its close had 1.47 times as many of the non-
personal accidents as they would have if the distribution of acci-
dents were independent of age. That this difference is not acci-
dental, according to Mr. Johnson, is evidenced by the fact that
the probability of the independency-hynothesis being true is less
than 10724

The significance of Mr. Johnson’s report is that it demonstrates
the use of the Poisson distribution in studying rare events. Sup-
pose that one wishes to know whether a driver having 3 accidents
in 6 years is an accident-prone driver. According to Mr. Johnson’s
figures the average for all drivers is

7082 )

—— = ,2398 = .24 accidents = m.

29531
With this value of m we find from a Poisson distribution table
that the probability of a driver having 3 accidents is .0018 or .18
per cent. This means that the chances are 100 to .18 or approxi-
mately 550 to 1 against an average driver’s having 3 accidents. We
may conclude, therefore, that a driver who has this many mishaps
is a bad risk.
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V.29. Rare Events (Accidents at Intersections). Washington, D. C.
has a total of 7,683 intersections open to traffic. During the year
1950 there were 6,211 accidents at intersections. Suppose it is
desired to know how many accidents at an intersection make it
accident prone.

6211
The average number of accidents = 83— .8 = m. According

to the Poisson distribution, the probabilities of accidents occurring
at an intersection are as follows:

Table V.12
Number of Accidents Probability
2 .0438
3 .0383
4 .0077
5 .0012
3 or more L0474
4 or more .0091
5 or more .0014

Suppose that it is decided that when the odds are 20 to 1 that
the accidents occurring are not due to chance alone, an inter-
section is to be considered accident prone. According to the table,
3 or more accidents will occur due to chance 4.74 per cent of the time.
This ratio of one to .0474 is over 20 to 1, hence an intersection
having over 3 accidents would be considered unduly hazardous.

Records are not available as to the distribution of intersections
having less than 5 accidents, but of those with five or more it is
possible to compare the actual occurrence of accidents with the
number expected to occur according to the Poisson distribution.
See Table V. 13.

This procedure is presented to illustrate a method of approach
and not as a suggested analysis, for obviously the records should
be much more complete. Clearly the volume of traffic is one of the
most important, if not the most important, factor.

V.30. Size of Sample to Determine Average Number of Car Passen-
gers. In making a traffic survey it is required to know the average
number of persons per car. The problem is to determine the size
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Table V.13. NUMBER oF INTERSECTIONS IN WASHINGTON,
D.C. AT WHICH 5 OR MORE ACCIDENTS OCCURRED IN 1950

Number of
Number of Number of Total Number Intersections
Intersections Accidents of Accidents Ewxpected to have
having Accidents | Per Intersection Number of Accidents
Shown in Col. 2
85 5 425 27
68 6 408 40
76 7 532 50
55 8 440 55
22 9 198 54
32 10 320 47
12 11 132 38
10 12 120 28
7 13 91 19
5 14 70 12
9 15 135 7
4 16 64 4
4 17 68 2
4 18 72 1
3 19 57 Less than 1
5 20 100
2 21 42
1 22 22
1 23 23
1 27 27
1 28 28
1 32 32
1 37 37
1 45 45
1 64 64
1 86 86
412 3638
Note: In this case, m = —346T328 = 8.8. The last column, Number of Intersections Expected to

have Number of accidents shown in Column 2, can be obtained by multiplying the probabilities
of occurrence taken directly from ‘‘Poisson Exponential Binomial Limits,”® by 412, the total
number of intersections. It may also be obtained from Appendix Table No. VI, page 226. This
table gives the probability of z or more events occurring during a given interval, when m, the
average number of events per interval is known. In using Table VI, the probability that x,
a specific number of events will oceur, is equal to the difference between Lhe probabilities of
% or more and (¢ + 1) or more events occurring. In the above table, the pure chance probability
of 5 accidents occurring at an intersection is the difference in probability of 5 or more and 6 or
more accidents occurring. Multiplying this difference by the total number of intersections gives
the number of intersections expected to have 5 accidents. Referring again to Table VI, 0.872
(the probability that 6 or more accidents will take place) subtracted from 0.938 (the probability
that 5 or more accidents will take place) leaves 0.066 or 6.6 %. Multiplying 412 by 6.6 % gives
27, the number of intersections that may be expected to have 5 accidents.
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of sample to give a 95 per cent assurance that the mean value will
not be in error more than 0.1.

Suppose that the following typical occupancy count has been
made:

Occupants (x) Number of Observations (f)
1 15
2 10
3 4
4 2
5 1
Mean = X = 1.9 N =32

The standard deviation s is first calculated and found to be 1.054.
From formula IV.7.3.

N—1 & (10542 1.11
N—1_ & (L0547 111 .,

From Appendix Table 3, Ratio of Degrees of Freedom to (t?), we

find that with a probability level of 5 per cent (95 per cent assur-
2

ance) that for N — 1 = 400, that %2 = 103.069 and for N — 1
2

= 500, == 128.836. Since 111 lies between these two values we

conclude that the size of sample required is between 400 and 500,

and if we wish to be conservative we take the higher value. Also

it would have been better to have taken a larger (preliminary)

sample to obtain the trial standard deviation.

V. 31. Size of Sample Required in Speed Study. It is desired to know
the average speed on each block within one mile per hour on a
street with 60 intersections. It is also desired that there be a 95
per cent assurance as to the result. It is assumed that the speed
will vary with the volume of traffic, the weather, the amount of
parking, and perhaps other conditions. The problem is to find the
required size of sample and, having determined this, to recom-
mend a method of making the observations that will yield a truly
random sample.
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The logical procedure is to take a random sample of about
100 observations in order to obtain an estimated standard devia-
tion to be used in determining the size of sample. Suppose from
this sample that it is found that the speed range is from 5 to
40 miles per hour and that the standard deviation, s, equals
4.5 miles per hour.

We use the t-distribution to find the size of sample. From for-
mula IV.7.3.

we find the ratio of N — 1 to t2 by inserting the values for s and ¢.
The standard deviation s in the present example, as found from
the preliminary sample, is 4.5 miles per hour and the allowable
error is one mile per hour.

N—1 ¢ (452 2025

= —= — = 20.25
t2 €2 12 1

Hence,

From a table of ratio of degrees of freedom to t* we find that

with a probability level of 5 per cent that a ratio of = 20.202

o4 5201818 1

Therefore, we conclude that N, the size of sample, lies between 81
and 91. To be on the safe side, we may say that a sample of 100
observations will give us at least a 95 per cent assurance that
the average speed will be obtained within + 1 mile per hour. If
a 99 per cent assurance is desired the size of sample according to
the table would be between 100 and 200.

The next phase of the problem is that of getting a truly random
sample. Obviously taking all the speeds on a day of light traffic
would give a biased result. Clearly there must be some knowledge
of the relative duration of the various conditions that influence
speeds. Increasing the size of the sample so that observations might
be distributed over a greater number of hours of the day, more
days of the week and more months of the year would assure a
better estimate of the speed. Increasing the size of sample to 200
should give sufficient coverage.

corresponds 5o N — 1 = 80 and 22.727 corresponds to N — 1 —90.
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Since the speed is desired for each block it is necessary that
observations be taken in each block. Some accurate mechanical
device that is free from human errors is always preferable. This,
however, would require either 60 recording devices or & rotation
of a lesser number. Since they would give “spot” checks they
would also need to be rotated to different positions in the blocks.

Another way would be to have an observer’s car “float” with
the traffic. The observer as well as recording speed could also note
pertinent information such as the amount of parking. Manual re-
cording could be supplemented or replaced by some mechanical
device such as taking a picture of the conditions in each block and
including in the picture a clock to show the time of reaching each
intersection. The cost of such pictures taken on 16 mm film would
be negligible.

The particular method to be employed in this or any other pro-
blem involving the collection and analysis of data should be se-
lected by the engineer in charge after he has made a preliminary
study of both the nature of the data and the reliability and cost of
the various possible methods of conducting the field study. Sta-
tistics is merely an aid to the engineer and not a substitute for
experience and judgment.
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APPENDIX Table I
Areas Under the Normal Probability Curve

From the Mean to Distances ; from the Mean, Expressed as Decimal

Fractions of the Total Area 1.0000
The proportional part of the curve included between an ordinate erected
at the mean and an ordinate erected at any given value on the X axis can
be read from the table by determining x (the deviation of the given value

from the mean) and computing i—:. Thus if X = $25.00, ¢ = $4.00, and
it is desired to ascertain the proportion of the area under the curve between

ordinates erected at the mean and at $20.00; x = $5.00 and é = 242——8%

= 1.25. From the table it is found that .3944, or 39.44 per cent, of the
entire area is included.

%‘ .00 o1 | 02| 03| 04| 05| 06 07| .08 09
0.0 0000 0040 | .0080 | .0120 | .0159 | .0199 | .0239 | .0279 | 0319 | .0350
0.1 0398 0438 | 10478 | 10517 | 0557 | .0596 | .0636 | -0675 | 0714 | 0753
0.2 0793 0832 | 0871 { .0910 | .0048 | J0087 | 1026 | ‘1064 | 1108 | (1141
0.3 1179 1217 | 11255 | 11203 | 11331 | 1368 | 1406 | 1443 | 1480 | 1517
0.4 1554 1591 | 1628 | (1664 | .1700 | 1786 | 1772 | 1808 | 1844 | .1879
0.5 1915 1950 | .1985 | .2010 | .2054 | .2088 | .2123 | 2157 | 2100 | 2224
06 2957 2201 | 2324 | (2357 | 2380 | 12492 | 2454 | 2486 | 2518 | .2549
07 2580 2612 | 2642 | 2673 | 2704 | 2734 | 2764 | 2704 | 2823 | 2852
0.8 2881 2010 | .2930 | 2967 | 2095 | 3023 | 13051 | 3078 | 3106 | .8133
0.9 3159 3186 | 3212 | .3238 | .3264 | .3289 | 3315 | .3840 | .3365 | 3380
1.0 3413 3438 | .3461 8485 | .3508 | .3531 35564 | .8577 | .3599 3621
11 3643 3665 | 3686 | 3718 | .3720 | 3740 { 3770 | 3790 | 3810 | .3830
12 3849 3860 | .3888 | .3007 | .3025 | .3044 | .3062 | 3980 | .3007 | .4015
13 4032 4049 | 14066 | 14083 | 4000 | 4115 | 4131 | 4147 | 4162 | .4177
14 4192 4207 | 14292 | 4236 | 4251 | 4265 | .4270 | 4202 | 4306 | .4310
15 4332 4345 | 4367 | .4870 | 4882 | 4304 | .4406 | .4418 | 4430 | 4441
1.6 4452 4463 | 14474 | 4485 | 4495 | 14505 | 14515 | 14525 | 4535 | 4545
17 4554 4564 | 4573 | 4582 | (4591 | 4500 | 4608 | 4616 | 4625 | .4633
18 4641 4649 | 4656 | 4664 | 4671 | 4678 | 4686 | .4693 | 4600 | .4706
19 4713 4710 | 4726 | 4732 | 4738 | 4744 | 14750 | 4758 | 4762 | L4767
2.0 4773 4778 | 4783 | 4788 | .4703 | .4798 | 4803 | 4808 | 4812 | .4817
21 4821 4826 | 14830 | 4834 | .4838 | 4842 | 14846 | 4850 | 4854 | 4857
2.2 4861 4865 | 14868 | .4871 | 4875 | 4878 | 4881 | 4884 | 887 | 4390
2.3 4893 4896 | 14808 | 4001 | .4904 | 4906 | .4000 | 4911 | (013 | 4916
2.4 4918 4920 | 14992 | 14025 | 14927 | 4920 | 14081 | 4932 | (2934 | 4936
2.5 4938 4940 | 4941 | 4943 | .4945 | .4046 | 4048 | 4040 | 4951 | 4052
26 4953 4955 | 14956 | 4057 | 4959 | (4960 | 4961 | 14962 | 14963 | 4064
2.7 14065 4966 | 14967 | 4068 | 4060 | 4970 | 14071 | 4072 | 4973 | 1974
2.8 4974 4975 | (4976 | 4977 | [a077 | (4078 | 14079 | 4980 | (4980 | |a081
2.9 ‘081 4982 | 4983 | 4984 | 4084 | .4084 | 14085 | 4085 | (4086 | .4086
3.0 49865 4987 | .4087 | 4088 | .4988 | .4988 | .4989 | .4980 | .4080 | .4900
31 149903 4991 | 14991 | (4901 | 12002 | [a002 | ‘4002 | 4092 | 4003 | 4903
32 14093120

3.3 14995166

3.4 14906631

35 14007674

3.6 4098409

37 14098922

38 13009277

39 14099519

40 14099683

5 4999966

5.0 14099997133

Used by permission of Houghton Mifflin Company, publishers of Rugg's - Siatistioal Methods
Applied to Education”.
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APPENDIX Table II

Table of Values of ¢

For Given Degrees of Freedom (n) and at Specified Levels of Significance (P)

In the use of this table it is to be remembered that a level of significance
refers to both tails of the distribution. Thus, the .02 level (P = .02)
includes .01 of the area of the curve in each tail. It is to be observed that
this table is set up in a different form from the table of normal curve areas,

Appendix Table I. The table of normal curve areasshowed values of Z—; in the
margins and proportionate areas from X to i—{ (one direction only) in the

body. A tail of the normal distribution is obtained by subtracting this
value from .5000. Doubling the resulting figure yields the level of signi-
ficance. The ¢ table, on the other hand, shows n (degrees of freedom) in
the stub, ¢ in the body, and P (the level of significance) in the caption.
The last row of the ¢ table, for N = o0, shows ¢ values as obtained from
the normal curve.

Level of Significance (P)
9| 81 .71 .8 5 4 .3 2 .1 05 .02 .01 001

.158].825].510(.727| 1.000 | 1.876 | 1.963 | 3.078 { 6.314 (12.706 [31.821 |63.657 | 636.619
.142 .289) .445| .617| .816 [ 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 31.598
. . . . . . . . 5.841 | 12.941
134).271.414[.569] .741 | .941 | 1.190 | 1.533 | 2.132 | 2.776 ( 3.747 | 4.604 8.610
132 .267| .408| .559| .727 | .920 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 6.859
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10 |.129|.260.397).54Zf .700 | .879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 ) 3.i09 4.087

30 |127| .256| 389|530 683 | 854 | 1.055 | 1.810 | 1.607 | 2.042 | 2.457 | 2.750 | 3.646

40 |.126|.255|.388;.529| .681 | .851 | 1.050 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 8.551
60 1.126) .254;.3871.627) .679 | .848 | 1.046 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 3.460
120 |.128|.254.386|.626| .677 [ .845 | 1.041 | 1.2890 | 1.658 | 1.980 | 2.358 | 2.617 3.373
© |.126|.258.385|.624| .674 | .842|1.036 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 3.201

Appendix Table II I8 reprinted from Fisher and Yates: »Statistical Tables for Biological,
Agricultural, and Medical Research'*, published by Oliver and Boyd, Ltd., Edinburgh, by per-
miasion of the authors and publishers.
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Table III
Rartro oF DEGREES oF FREEDOM TO (£)2
Deyfmes Probability Level
0,
Freedom 59, 29, 1%
1 0.006 0.001 0.0002
2 0.108 0.041 0.020
3 0.296 0.145 0.088
4 0.519 0.285 0.189
5 0.756 0.442 0.308
6 1.002 0.607 0.437
7 1.252 0.778 0.572
8 1.504 0.954 0.711
9 1.759 1.131 0.852
10 2.015 1.309 0.996
11 2.271 1.489 1.140
12 2.527 1.670 1.286
13 2.786 1.851 1.433
14 3.043 2.033 1.580
15 3.303 2.216 1.727
16 3.560 2.398 1.875
17 3.818 2.580 2.024
18 4.078 2.764 2.173
19 4.337 2.947 2.321
20 4.596 3.130 2.471
21 4.854 3.312 2.620
22 5.115 3.498 2.768
23 5.373 3.680 2.919
24 5.634 3.865 3.068
25 5.891 4.048 3.219
26 6.151 4.231 3.367
27 6.412 4.415 3.516
28 6.676 4.601 3.668
29 6.934 4.784 3.818
30 7.195 4.969 3.967
40 9.803 6.813 5.447
60 15.000 10.504 8.480
120 30.596 21.582 17.523
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APPENDIX Table IV
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For large values of n compute }J2y2, the distribution of which is ap-

is the ratio

1.

tely normal around a mean of ]/2n — 1 witho
of one tail of the normal distribution to the area under the entire curve.

proxima

A detailed table of the probability of varjous values of y* for one degree

of freedom

to the

20N
. 534-535, Charles Griffin and Co.,

in G. U. Yule and M. G. Kendall, An Introduct

is given

Theory of Statistics, 11th edition, pp

London, 1937.

Statistical Tablcs for Biological,
, Ltd., Edinburgh, by per-

Y

arch’’, published by Oliver and Boyd

! Rese
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Appendix Table IV is reprinted from Fisher and Yates
cultural, and Med
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mission of the authors and publishers.
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APPENDIX
gg;ggg:‘rr::tumv Froure I & IT
net
9 P 2 4

: ]
A F
RELATIVE HEIGHT LUE OF X
OF ORDINATE

vaLug ofF X*

0 2 4 [) 8 10 12 TA 16 18

Distribution of y2 forn =1, n = 5, n = 9, and n = 17. The maximum
ordinate is at % = n — 2 except when n = 1. When »n = 1, the max-
imum ordinate is at ¥ = 0. When n = 1, there.is 4.55 per cent of the
curve beyond x* = 4. Beyond x% = 30 there is .0015 of one per cent
of the curve when n = 5; .0439 of one per cent of the curve when n = 9;
2.6345 per cent of the curve when n = 17. The two charts have been
drawn to different scales. If the vertical axis of the upper chart is ex-
panded to approximately 20 times its length and the horizontal axis is
contracted to about one-eighth of its length, the curves will be roughly

comparable as to area.
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APPEN-
5°/, and 19/, Points for Distribution of F.

n, degrees of freedom (for greater mean square)

Ny
1 2 3 4 5 6 7 8 9 10 11 12
1 161 200 216 225 230 234 237 239 241 242 243 244
4,052 4,999 5403 5,625 5,764 5,859 5,928 5,981 6,022 6,056 6,082 6,106
2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41

3 1013 9.55 9.28 912 9.01 8.94 888 8.84 881 878 8.76

98.49 99.00 99.17 99.25 99.30 99.33 99.34 99.36 99.38 99.40 99.41 99.42

8.7¢

34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 596 5.93 5.91
21.20 18.00 16.69 1598 15.52 15.21 14.98 14.80 14.66 14.54 14.45 14.37

5 6.61 579 541 5.19 5.05 4.95 4.88 4.82 4.78 474 4.70 4.68
16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.27 10.15 10.05 9.96 9.89

6 5.99 514 476 4.53 439 4.28 4.21 415 4.10 4.06 4.03 4.00
13.74 1092 9,78 9.15 875 8.47 8.26 8.10 798 7.87 779 17.72

7 559 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57
1225 9.55 845 7.85 746 7.19 17.00 6.84 6.71 6.62 6.54 6.47

8 5.32 4.46 407 384 369 3.58 350 3.44 3.30 3834 331 328
1126 8.65 7,59 7.01 6.63 637 619 6.03 591 5.82 5.74 5.67

9 512 4.26 3.86 3.63 348 38.37 3.29 3.23 3.18 3.13 38.10 3.07
10.56 8.02 699 642 6.06 5.80 5.62 5.47 535 5.26 5.18 5.11

10 496 4.10 3.71 3.48 3.33 3.22 314 3.07 3.02 297 294 291
1004 7.56 655 599 5.64 539 521 5.06 495 4.85 4.78 4.71

11 484 3.98 3.59 336 3.20 3.09 301 295 2.90 2.86 2.82 2.79
9.65 7.20 6.22 5.67 532 5.07 4.88 474 463 454 4.46 4.40

12 475 3.88 3.49 326 311 3.00 292 285 2.80 2.76 2.72 2.69
933 693 595 5.41 5.06 4.82 4.65 4.50 439 430 422 4.16

13 4.67 3.80 841 3.18 3.02 292 2.84 2.97 2.72 2.67 2.63 2.60
9.07 6.70 5.74 520 4.86 4.62 444 430 419 4.10 4.02 3.96

14 4.60 3.74 38.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.66 2.53
8.86 6.51 556 5.03 4.69 446 428 4.14 4.03 394 3.86 3.80

15 4.54 3.68 3.29 3.06 290 2979 2.70 2.64 259 2,55 2,51 248
R68 636 542 4.89 456 432 4.14 4.00 3.89 3.80 3.73 3.67

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2,54 249 245 242
8.53 623 5.29 477 444 420 4.03 3.89 3.78 3.69 3.61 3.55

17 4.45 3.59 3.20 2.96 2.81 270 2.62 2.5 2.50 245 241 2.38
8.40 6.11 5.18 4.67 434 4.0 393 3.79 3.68 3.59 3.52 345

18 441 3.55 316 2.93 277 2.66 258 251 2.46 241 2.37 2.34
8.28 6.01 509 4,58 425 4.01 385 3.71 3.60 3.51 344 3.37

19 4.38 3.52 3.13 2.90 2.74 2.63 2.55 2.48 243 2.38 234 231
8.18 5.93 5.01 450 4.17 394 3.77 3.63 3.52 343 3.36 3.30

20 4.35 349 310 2.87 271 260 252 245 2.40 2356 231 228
8.10 585 494 443 4,10 387 371 3.56 3.45 3.37 330 3.23

21 4.32 3.47 3.07 2.84 2.68 2.57 249 242 2.37 2.32 2.28 225
8.02 578 4.87 437 4.04 3,81 365 3.51 3.40 331 3.2¢ 317

22 430 344 305 282 266 255 247 240 2.85 2.30 2.26 2.23
794 572 482 431 399 3.76 359 3.45 3.35 326 3.18 3.12

23 428 342 303 2.80 264 253 245 2.38 2.32 228 224 220
7.88 566 476 426 394 371 354 341 3.30 3.21 3.14 3.07

24 4.26 3.40 3.01 2.78 2.62 2.51 243 2.36 2380 2.26 222 218
7.82 5.61 4.72 4.22 390 367 350 3.36 325 3.7 3.09 3.03

25 424 3.38 299 276 260 249 241 2.34 2.28 224 220 216
777 5,57 4.68 4,18 3.86 3.63 346 3.32 3.21 3.3 3.05 299

26 4.22 337 298 274 259 247 239 2.32 2.27 222 218 215
7.72 553 4.64 414 3.82 359 342 3.29 3.17 3.09 3.02 296

The function, F=e with exponent 22, is computed in part from Fisher‘s table VI (7). Ad-

Used by Permission of lowa State College Press, Publishers of Snedecor’s
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n, degrees of freedom (for greater mean square)

n,
14 16 20 24 30 40 50 75 100 200 500 © ’
245 246 248 249 250 251 252 253 253 254 254 254 1
6,142 6,169 6,208 6,234 6,258 6,286 6,302 6,323 6334 6,352 6,361 6,366
19.42 19.43 19.44 19.45 19.46 19.47 10.47 19.48 19.49 19.49 1950 19.50 2
99.43 99.44 99.45 99.46 99.47 99.48 99.48 99.49 99.49 99.49 99.50 99,50
8.71 869 866 8.64 8.62 860 858 857 856 854 854 853 3
26.92 26.83 26.69 26.60 26.50 26.41 26.35 26.27 26.23 26.18 26.14 26.12
5.87 5.84 5.80 5.77 574 571 570 568 566 5656 564 563 4
14.24 14.15 14.02 13.93 13.83 13.74 13.69 13.61 13.57 13.52 13.48 13.46
4.64 4.60 456 4.53 4.50 446 444 442 440 4.38 4.37 4.36 5
977 9.68 9.55 947 9.38 929 924 917 9.3 9.07 9.04 9.02
3.06 3.92 387 3.84 3.81 8.77 375 372 371 38.60 3.68 3.67 6
7.60 7.52 739 731 723 7.4 709 7.02 699 694 690 6.88
3.62 3.49 344 3.41 3.38 3.3¢ 332 3290 328 3.25 3.2¢ 7
6.35 6.27 6.15 6.07 598 590 585 578 575 570 5.67 5.65
3.23 3.20 3.15 3.12 3.08 3.05 3.03 300 298 296 294 293 8
5.56 5.48 536 5.28 520 5.11 506 500 496 4.91 4.88 4.86
3.02 298 293 2.90 2.86 2.82 2.80 277 2.7 273 272 271 9
5.00 492 480 4.73 4.64 456 4.51 445 441 436 433 431
2.86 2.82 277 2.74 2.70 2.67 264 261 259 256 255 254 10
4.60 452 4.41 433 425 417 412 4.05 401 396 393 391
2.74 2.70 2.65 261 257 2.53 250 247 245 242 241 240]| 11
429 421 4.10 4.02 394 386 380 374 370 3.66 3.62 3.60
2.64 260 254 250 246 2.42 240 2.36 235 232 231 230 12
405 398 386 3.78 3.70 3.61 3.56 349 346 341 3.38 3.36
2.55 251 246 242 2.38 2.3¢ 232 228 226 224 222 221 13
3.85 3.78 3.67 3.59 3.51 3.42 337 330 327 321 3.8 3.16
2.48 244 230 235 2.31 2.27 224 221 219 2.16 2.14 2.13 14
3.70 3.62 351 3.43 334 326 321 3.4 311 3.06 3.02 3.00
2.43 2.39 233 229 2.256 221 218 215 212 210 2.08 207 15
3.56 3.48 3.36 3.29 3.20 3.2 3.07 3.00 297 292 289 2.87
2.37 233 228 224 2.20 216 213 209 207 2.04 202 201 16
3.45 337 325 3.8 3.10 3.01 296 289 286 280 277 275
2.33 2.29 223 219 2.15 211 208 2.04 202 1.99 197 1.96{ 17
3.35 3.27 3.6 3.08 3.00 292 286 279 276 270 2.67 2.65
2.29 225 219 215 211 2.07 2.04 200 198 1.95 193 1.92| 18
3.27 3.19 3.07 3.00 291 283 278 271 268 262 259 257
2.26 221 215 211 2.07 2.02 2.00 196 194 191 190 1.88 19
3.19 3.12 3.00 2.92 284 276 270 263 260 2.54 251 249
2.23 218 212 2.08 2.04 1.99 196 192 190 187 1.8 1.84{ 90
3.13 3.05 294 286 277 2,69 263 256 253 247 244 242
2.20 2.15 2.09 2.05 2.00 1.96 1.3 189 1.87 1.84 1.82 1.81| 21
3.07 299 288 280 272 263 258 251 247 242 238 236
2.18 213 2.07 2.03 1,08 1.93 1.91 1.87 1.8 181 1.80 178 22
3.02 294 283 275 2.67 258 253 246 242 237 233 231
2,14 2,10 2.04 2.00 196 1.91 1.88 1.84 1.82 1.99 1.77 1.76|] 28
297 289 278 270 2,62 253 248 241 237 232 228 226
2.13 2.09 2.02 1.98 194 189 1.86 182 180 1.76 1.74 1.73] 24
293 285 274 2.66 258 249 244 236 233 227 223 221
211 206 2.00 1.96 1.92 1.87 1.84 1.80 1.77 174 172 1.71| 25
289 281 270 2.62 2.54 245 240 232 229 223 219 217
2.10 2.05- 1.99 1.95 1.90 1.8 1.82 1.78 1.76 1.72 1.70 1.69] 26
2.86 2,77 2.66 2,558 2.50 241 236 228 225 219 215 2.13
ditional entries are by interpolation, mostly graphical.

«“Statistical Methods, 4" Edition”.



224

STATISTICS AND HIGHWAY TRAFFIC ANALYSIS

APPENDIX
59/, and 1°¢/, Points for the Distribution of F.

n, degrees of freedom (for greater mean square)

1 2 3 4 5 6 7 8 9 10 11 12

27
28
29

30

32
34
36

38

40
42
44
46
48
50
55
60

65

70
80
100

125

150
200
400

1000

421 335 296 273 257 246 237 230 2.25 2.20 216 2.13
7.68 549 460 4.11 3.79 356 339 3.26 3.14 3.06 298 293
420 334 295 271 256 244 236 229 2.24 219 215 212
7.64 545 457 407 376 353 336 3.23 3.11 3.03 295 2.9
418 3.33 293 270 254 243 235 228 2.22 218 214 210
7.60 5.42 L 454 4.04 373 350 333 3.20 3.08 3.00 292 287

417 382 292 2.69 253 242 234 227 221 2.16 2.12 2.09
7.56 539 4,51 4.02 370 347 330 3.17 3.06 298 290 284

415 3.30 290 267 251 240 232 225 219 214 210 207
7.50 534 446 397 3.66 342 325 3.12 3.01 294 2.86 280

413 3.28 2.88 2.66 249 238 230 2.23 2.17 212 2.08 2.05
744 529 4.42 393 3.61 338 321 3.08 297 289 282 276
411 3.26 2.86 263 248 236 228 221 215 210 2.06 2.03
739 525 438 3.89 358 335 3.18 3.04 294 286 278 272

410 3.25 285 262 246 235 226 2.19 2.14 2.09 2.056 202
735 521 434 386 354 332 315 3.02 291 282 2,75 269

408 3.23 2.84 261 245 234 225 218 2.12 207 2.04 2.00
731 518 431 3.8 351 329 3.2 299 2.88 280 273 266

407 3.22 283 259 244 232 22¢ 217 211 2.06 2.02 199
727 515 429 380 349 3.26 3.10 296 286 277 270 2.64
4.06 3.21 282 2.58 243 231 223 216 2.10 205 201 198
7.24 5.12 426 3.78 346 324 3.07 294 2.84 275 2.68 262
4.05 320 2.81 257 242 230 222 214 2.09 204 2.00 1.97
721 5.10 424 3.76 3.44 322 3.05 292 2.82 273 2.66 260
404 319 280 256 241 230 221 214 2.08 203 1.99 1.96
719 5.08 422 374 342 320 304 29 2.80 271 2.64 258
403 318 2.79 256 240 229 220 213 2.07 202 198 1.95
7.17 5.06 420 372 341 3.18 3.02 2.88 278 270 2.62 256
4.02 317 2.78 254 2.38 227 218 211 2.05 2.00 1.97 193
7.12 501 416 3.68 337 315 298 285 2.75 2.66 2.59 253
400 315 2.76 252 237 225 217 210 2.04 199 195 1.92
7.08 498 413 3.65 334 312 295 2.82 272 263 256 250

399 314 275 251 236 224 215 2.08 2.02 198 1.94 1.9
7.04 495 4.0 3.62 331 3.09 293 279 270 261 2.54 247

3.98 313 274 250 235 223 214 207 2.01 1.97 1.93 1.89
7.01 492 4.08 3.60 3.29 3.07 291 277 2.67 259 2.51 245

396 311 272 248 233 221 212 205 1.99 195 191 188
696 4.88 4.04 356 3.25 3.04 287 274 2.64 2.55 248 241
3.94 3.09 270 246 230 219 2.10 2.03 1.97 1.92 1.88 1.85
690 482 398 351 320 299 282 2.69 2.59 251 243 236

392 3.07 268 244 220 217 208 2.01 1.95 1.90 1.86 1.83
684 4.78 394 347 3.17 295 279 2.65 2.56 2.47 240 233

391 3.06 267 243 227 216 207 2.00 1.94 1.80 1.8 1.82
6.81 4.75 391 344 3.14 292 276 2.62 2,53 244 237 230

3.80 38.04 265 241 226 214 205 1.98 1.92 1.87 1.8 1.80
676 4.71 3.88 341 3.1 290 273 2.60 2.50 241 234 228
3.86 3.02 262 239 223 212 203 1.96 1.90 1.85 1.81 178
6,70 4.66 3.83 3.36 3.06 2.85 2.69 255 246 237 229 223
3.85 3.00 261 238 222 210 202 195 1.89 1.84 1.80 1.76
6.66 462 3.80 334 3.04 282 266 253 243 234 226 220

3.84 299 260 237 221 209 201 194 1.88 1.8 179 175
6,64 4.60 378 3.32 3.02 289 2.64 251 241 232 224 218
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Table V (Continued)
(5 %/, in Roman Type, 19/, in Bold Face Type).
n, degrees of freedom (for greater) mean square) n
3

14 16 20 24 30 40 50 75 100 200 500 0
2.08 2.03 1.97 1.93 1.88 1.8¢ 180 176 1.74 171 1.68 1.67 27
283 274 2.63 2.55 247 238 233 225 221 216 212 2.10
2.06 2.02 1.96 1.91 1.87 1.81 1.78 175 172 1.69 1.67 1.65 28
280 271 2,60 2.52 244 235 230 222 218 213 2,09 206
2.06 200 1.94 1.90 1.85 1.80 1.77 1.73 171 168 1.65 1.64 29
277 2.68 257 249 2.41 232 227 219 215 210 2.06 2.03
2.04 199 193 1.89 1.84 179 1.76 1.72 169 166 1.64 1.62 30
274 2.66 2.55 2.47 238 229 224 216 213 207 203 201
2.02 1.97 191 1.86 1.82 176 1.74 1.69 167 1.64 1.61 1.59 32
270 2.62 2.51 242 234 225 220 212 208 202 1.98 1.96
2.00 195 1.80 1.84 1.80 1.74 171 1.67 164 1.61 1.59 1.57 34
2.66 258 247 2.38 230 221 215 208 204 198 194 191
1.08 193 1.87 1.82 1.78 172 169 165 1.62 1.569 1.66 1.55 36
262 254 243 235 2.26 217 212 2,04 2.00 1.94 190 1.87
1.96 192 1.85 1.80 176 1.71 1.67 1.63 160 157 154 1.53 38
259 2.51 240 232 222 214 208 200 197 190 1.86 1.84
195 190 1.84 1.79 174 169 166 161 159 155 1.63 1,51 40
256 249 237 229 220 211 205 197 194 1.88 184 1.81
1.94 189 1.82 1.78 1.73 1.68 164 1.60 1.57 154 1.61 1.49 42
254 246 235 226 2,17 208 202 194 191 1.85 1.80 178
1.92 1.88 1.81 1.78 1.72 166 163 158 1.56 1.52 1.50 1.48 44
2.52 244 232 2.24 215 206 200 192 188 182 178 175
191 1.87 1.80 1.75 1.71 165 1.62 157 1.54 1561 1.48 1.46 46
250 242 230 222 213 204 198 190 186 180 176 1.72
190 1.86 1.79 1.74 1.70 1.64 1.61 156 1.53 1.50 1.47 1.45 48
2.48 240 228 2.20 2.11 202 196 1.88 1.84 1.78 1.73 1.70
1.90 185 178 1.74 1.69 1.63 1.60 1.55 1.52 1.48 1.46 1.44 50
246 239 226 2.18 210 200 194 186 1.82 176 1.71 1.68
1.88 1.83 1.76 1.72 1.67 1.61 158 1.52 150 1.46 143 1.41 55
243 235 223 2.15 2.06 196 190 1.82 1.78 171 1.66 1.64
1.86 1.81 1.75 1.70 1.65 1.59 156 1.50 1.48 144 141 1.39 60
240 232 220 212 203 192 187 179 174 168 1.63 1.60
1.856 1.80 1.73 1.68 1.63 1.7 1.564 1.49 146 142 1.39 1.37 65
237 230 218 2.09 2.00 190 1.84 1.76 171 1.64 1.60 1.56
1.84 1.79 1.72 1.67 1.62 156 153 147 145 1.40 1.37 1.35 70
225 228 215 2.07 198 1.88 1.82 1.74 1.69 1.62 1.56 1.53
1.82 1.77 1.70 1.65 1.60 154 151 145 1.42 1.38 1.35 1.32 80
232 224 211 2.03 194 184 178 170 165 157 152 149
1.79 1.76 1.68 1.83 1.57 1.51 148 142 139 1.34 1.30 1.28] 100
226 219 206 198 1.89 179 1,73 1.64 159 151 146 143
1.77 1.72 1.65 1.60 1.55 1.49 145 1.39 1.36 1.31  1.27 1.25| 125
2.23 2.15 2.03 1.94 1.85 175 1.68 1.59 154 146 1.40 1.37
1.76 171 1.64 1.59 1.54 1.47 1.44 1,37 134 1.29 1.25 1.22| 150
220 212 200 19 1.83 172 166 1.56 1.51 143 137 133
1.74 1.69 1.62 1.567 1.52 1.45 142 1.35 1.32 1.26 1.22 1.19( 200
217 2.09 197 1.88 1.79 169 1.62 153 148 139 133 1.28
1.72 1.67 1.60 1.64 149 142 138 1.32 1.28 1.22 1.16 1.13} 400
2.12 2,04 192 1.84 174 1.64 1.57 147 142 132 124 1.19
1.70 1.65 1.58 1.568 147 141 1.36 1.30 1.26 119 1.13 1.08| 1000
2.09 201 189 1.81 171 1.61 154 144 138 128 1.19 1.11
1.69 1.64 1.57 1.52 1.46 140 185 128 124 1.17 111 1.00] oo
2.07 199 187 179 1.69 159 1.52 1.41 1.36 125 1.15 1.00
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APPENDIX Table VI
Poissox TABLES

Construction of the Table Giving the Probability of « or More Events
Happening in a Given Interval if ‘m’, the Average Number of Events
per Interval is Known — The probability that ‘x> Events will
Happen in a given time or space segment is equal to
e (mx)
—
where x refers to any value of ‘n’.

The value of this expression for various values of ‘m’ and ‘<’ is
readily available in standard Poisson tables.

Thus P, may be found for any given values of ‘x’ and ‘m’. For

Pn=

example, if m = 4 and x = 0. -
e— I (mX e—4 (40
x! 0!

Im=4andx=1
e (mX) e~*(41) _0.0183 (4)

P, = = - = 0.073
x! 1! 1

Ifm=4andx=2

e—4 (42 .0183 (16

o = ) = (16) = 0.147
21

Ifm=4andx=3

e—4 (43 0.0183 (64

p, =) _ ©9 _ o105

3! 6

This procedure can of course, be continued.

The probability of getting three or less is the sum of the prob-
ability of getting 0, 1, 2 or 3 and therefore is equal 0.018 + 0.073
+ 0.147 4 0.195 = 0.433 = 43.3 in 100 or 43.3 per cent. The
probability of getting four or more is 56.7 out of 100 or 56.7 per
cent. This follows from the fact that the total probability of getting
all possible numbers is one or 100 per cent. This is the procedure
followed in the calculation of the tables. Therefore, the values
given in the tables are



Ir “m”, THE AVERAGE NUMBER oF EVENTS PER INTERVAL, 18 KNOWN, THEN THE PROBABILITY OF ““z’’ OR MORE

HappENING 1N THIS INTERVAL MAY BE READ From TuIis TABLE

m~~ %1 2 3 4 5 6 7 8 9 10 11
095  .005
181 .018  .001
259 087  .004

393 090 .014 .002
122 .02  .003

DooNe [tintoboie
'S
o
[

933 751 .5086 .286 .137 .057 .021 .007 002 .001

945 785 554 330 168 .074 020 010 .003 .001
950 801 .577 .53 .185 .084 .034 .012 .004 .001

9556 815 .599 .75 .202 .094 .039 .014 .0056 .001
959 829 .620 .397 .219 .105 .045 .017 .006 .002
963  .841° .641 420 .2387 117 .061 .020 .007 .002 .001
067 - 858 660 442 .256 .120 .058 .023 .008 .003 .001
970 864 679 463 276 142 066 .027 010 .003 .001
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Ir “m’’, THE AVERAGE NUMBER OoF EvENTS PER INTERVAL, 18 KNowN, THEN THE PROBABILITY OF “2”’ OR MORE

HarpeNING IN TaHIS INTERVAL MAY BE READ FROM THIS TABLE

~ *1 2 3 4 b 6 7 8 9 10 11 12 13 14 15 16 17

B

903 986 867 721  .p42  .366 .233 123 062 .028 .012  .005 .002 .01
993 960 .875 735 560 .38¢ .238 .133 .068 .032 .014 .005 .002 .00l

.904 .963 .884 749 BT 402 .263 144 075 .036 016 .006 .002 001
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Ir “m”, THE AVERAGE

NUMBER OF EVENTS PER INTERVAL, 18 KNOWN, THEN THE PROBABILITY OF “2” orR MORE

HAPPENING TN Tais INTERVAL MAaY BE READ From THis TABLE

m~%1 2 3 4 5 [ 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

71 .009 .003 .973 .923 .836 .712 .565 .416 .284 .180 .106 .058 .030 .014 .006 003 .001

7.9 .009 .094 .975 .028 .844 .724 .580 .431 .207 .190 .113 .063 .033 .016 .007 .003 .001

73 909 .004 .076 .933 .853 .736 .594 .446 .311 .201 .121 .088 .036 .018 .008 .004 .001 .001

7.4 .000 .005 .078 .937 .860 .747 .608 .461 .324 .212 .1290 .074 .039 .020 .009 .004 .002 .001

75 000 .995 .080 .041 .868 .759 .622 .475 .338 .224 .138 .079 .043 .022 .010 .005 .002 .001

7.6 .099 .006 .081 .045 .875 .760 .635 .490 .352 .235 .146 .085 .046 .024 .011 .005 .002 .001

77 1.00 .998 .083 .048 .882 .780 .649 .504 .366 .247 .155 .091 .050 .026 .013 .006 .003 .001

7.8 1.00 .996 .084 .952 .888 .790 .662 .519 .380 .259 .165 .098 .055 .029 .014 007 .003 .001

79 1.00 .097 .085 .955 .804 .799 .674 .533 .393 .271 .174 .105 .059 .031 .016 .007 .003 .00l .001

80 1.00 .097 .086 .958 .900 .809 .687 .547 .407 .283 .184 .112 .064 .034 .017 .008 004 .002 .001

8.1 1.00 .097 .987 .960 .906 .818 .699 .561 .421 .206 .194 119 .069 .037 019 .009 .004 .002 .001

82 1.00 .097 .088 .063 .911 .826 .710 .576 .435 .308 .204 .127 .074 .040 .021 .010 .005 .002 .001

83 1.00 .008 .089 .065 .916 .835 .722 .588 .449 .321 .215 .135 .079 .04¢ .023 .011 005 .002 .001

84 1.00 .998 .000 .968 .921 .843 .733 .601 .463 .334 .2206 .143 .085 .048 .025 .013 .006 .003 .001

85 1.00 .008 .991 .970 .926 .850 .744 .614 .477 .347 .237 .151 .091 .051 .027 .014 .007 .003 001 .001

8.6 1.00 .098 .991 .072 .930 .858 .754 .627 .491 .360 .248 .160 .097 .055 .030 .015 .007 .003 .001 .001

87 1.00 .098 .092 .974 .934 .865 .7656 .840 .504 .373 .259 .169 .103 .060 .033 .017 .008 .004 .002 .001

88 1.00 .000 .003 .076 .038 .872 .774 .52 .518 .386 .271 .178 .110 .064 .035 .018 .009 .004 .002 .001

8.0 1.00 .090 .993 .977 .942 .878 .784 .864 .531 .399 .282 .187 .117 .069 .038 .020 .010 .005 002 .001

0.0 1.00 .999 .004 .979 .945 .884 .793 .676 .544 .413 .204 .107 .124 .074 .041 .022 .011 005 .002 .001

0.1 1.00 .099 .094 .980 .048 .890 .802 .688 .357 .426 .306 .207 .132 .079 .045 .024 .012 .008 .003 .001 .001

0.2 1.00 .090 .095 .982 951 .896 .811 .699 .570 .439 .318 .217 .139 .084 .085 .026 .013 .007 .003 .001 .001

0.3 1.00 .000 .095 .083 .054 .901 .819 .710 .583 .452 .330 .227 .147 .090 .052 .028 .015 .007 .003 .002 .001

0.4 1.00 .099 .995 984 957 .907 .827 .721 .596 .465 .342 .237 .155 .006 .056 .031 .016 .008 .004 002 001

9.5 1.00 .000 .006 .985 .060 .911 .835 .731 .608 .478 .355 .248 .164 .102 .060 .033 .018 .009 .004 .002 .001

9.6 1.00 .999 .096 .986 .962 .916 .843 .742 .620 .401 .367 .259 .172 .108 .064 .03¢ .019 .010 .005 .002 .001

0.7 1.00 .009 .096 .087 .965 .921 .850 .762 .632 .504 .379 .270 .181 .115 .069 .039 .021 .011 .005 .002 .001

0.8 1.00 .000 .997 .988 .967 .925 .857 .761 .644 .517 .392 .281 .190 .121 .073 .042 .023 .012 .006 .003 .001 001

9.0 1.00 .999 .097 .089 .960 .029 .863 .771 .656 .520 .404 .202 .109 .128 .078 .045 .025 .013 .007 .003 .001 .001
10,0 1.00 1.00 .997 .990 .971 .933 .870 .780 .667 .542 .417 .303 .208 .136 .083 .049 .027 .014 .007 .003 002 .001
101 1.00 1.00 .997 .900 .973 .937 .876 .789 .678 .555 .429 .315 .218 .143 .08 .0327.020 .016 .008 .004 002 .001
102 1.00 1.00 .008 .001 .974 .040 .882 .797 .689 .567 .442 .326 .228 .151 .094 .056 .032 .017 .009 .004 .002 .001
103 1.00 1.00 .008 .992 .976 .043 .888 .806 .700 .579 .44 .338 .238 .158 .100 .060 .03¢ .019 .010 .005 .002 001
104 1.00 1.00 .098 .092 .977 .947 .893 .814 .710 .591 .467 .350 .248 .166 .106 .064 .087 .020 .011 .005 .003 001 .001
705 1.00 1.00 .998 .993 .979 .950 .898 .821 .721 .603 .479 .36l .258 .1756 .112 .068 .040 .033 .012 .006 .003 .001 .001
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Ir “m”, TRE AVERAGE NUMBER OF EVENTS PIR INTERVAL, 18 KNOWN, THEN THE PROBABILITY OF ‘“z” OR MORE

HarpENING IN THIS InTERVAL MAY BE READ FrOM THIS TABLE

5

6

13

24

25 26 27 28

980

952 .

424 |

435 .

481 .

084 |

402 .

.089 .

099 .
104 |
110 ¢

789 .

115
121 .
127

139 .

.001
.001
001
.001
.001

.796 .
.804 .
811 .
818 . .
740 .

824

146 .
1562 .
159 .
166 .
178

117 .

005 .

.001
.001
.001 .001

.001 .001

.001 .001

0€3
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Ir “m”, THE AVvERAGE NUMBER OF EVENTS PER INTERVAL, 18 KNOWN, THEN THE PROBABILITY OF “‘2” OR MORE

HarpEnmvg IN TrHiS INTERVAL MAY BE REaAD FrOM THIS TABLE

m>~%1 2 3 4 5 [ 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
14.1 1.00 1.00 1.00 1.00 .998 .995 .987 .970 .941 .895 .831 .748 .651 .546 .440 .341 .253 .180 .123 .081 .051 .031 .018 .010 .005 .003 .001 .001
14.2 1.00 1.00 1.00 1.00 .998 .995 .987 .972 .944 .900 .837 .756 .661 .557 .451 .351 .262 .187 .129 .085 .054 .033 .019 .011 .008 .003 .002 001
14.3 1.00 1.00 1.00 1.00 .999 .995 .988 .973 .947 .904 .843 .764 .670 .567 .461 .361 .271 .195 .135 .089 .057 .035 .021 .012 .008 .003 .002 .001
14.4 1.00 1.00 1.00 1.00 .999 .996 .989 .975 .049 .908 .849 .772 .680 .577 .472 .371 .280 .203 .141 .094 .060 .037 .022 .013 .007 .004 .002 .001
14.5 1.00 1.00 1.00 1.00 .999 .996 .990 .976 .952 .912 .855 .780 689 .587 .482 .381 .289 .210 .147 .099 .064 .040 .024 .014 .008 .004 .002 .001 .001
14.6 1.00 1.00 1.00 1.00 .999 .996 .990 .077 .954 .016 .861 .787 .698 .508 .493 .391 .208 .218 .153 .104 .067 .042 .025 .015 .008 .004 .002 .001 .001
147 1.00 1.00 1.00 1.00 .099 .997 .991 .979 .956 .920 .866 .795 .707 .608 .503 .401 .307 .226 .160 .109 .071 .045 .027 .016 .009 .005 .003 .001 .001
34.8 1.00 1.00 1.00 1.00 .999 .997 .991 .980 .958 .923 .871 .802 .715 .617 .514 .411 .317 .234 .167 .114 .075 .047 .029 .017 .010 .005 .003 .001 .001
14.9 1.00 1.00 1.00 1.00 .000 .097 .992 .081 .961 .927 .877 .809 .724 .627 .524 .422 .326 .243 .174 .119 .079 .050 .031 .018 .010 .006 .003 .002 .001
15.0 1.00 1.00 1.00 1.00 .999 .097 .992 .082 .083 .u30 .882 .815 .732 .638 .534 .432 .336 .251 .181 .125 .083 .053 .033 .019 .011 .006 .003 .002 .001
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INDEX

Accidents

at intersections

expected distribution

Poisson distribution
Arithmetic mean, size of sample for
Arrays, standard deviation of .
Average

defined . .

desirable properties of
Averages

moving .

types of

Bernoulli’s theorem Coe
Bienaymé-Tchebycheff crlterlon ..
Binomial theorem . e

Cantelli’s theorem . .
Capacity
basic . .o Co.
highway, confu.swn as to meanmg
limiting factors
possible
practical .
theoretical, maximum (volu.me)
Central tendency, measure of .
Chi-Square

defined . . . e e

values of, Appendlx Table IV
Class frequency
Class interval . .
Classmark . . . ... ....
Classification, graphical summary method

Coefficient, correlation, significance of . .

Confidence limits . . . . . . . . ...
Correlation
basic theoryof . . . . . . . . .,
coefficient of e e e
coefficient, significance of . . . . . .
multiple . . . . . ... ... ..

........

Page

209
207
207
145
116

22
58

17
22

65, 66

P
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147,
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70
75

68

150
150
154
150
150
151

27

104
220
12
12
12
15
148
142

113
107
148
120
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multiple, example of .

partial .

ratio . .

simple, of d.nver tests
Crossing streams of traffic
Curves

cumulative frequency

frequency

233

Page

......

.....

probability, areas u.nder the normal Append.lx Ta.ble I

Delay at signalized intersections, calculating

Delay, average arrival method of determining . .

Determinants, evaluation of

Deviation
average
mean .
of arrays, standard
standard .

Dispersion and Variance

Distribution
binomial, arithmetic mean of
binomial, arithmetic mean of, example .
binomial, James Bernoulli, 1700 .
binomial, modal term of
binomial, modal term of, examples .
binomial, table
binomial, variance of . .
elements of . .
experimental
frequency
hypergeometric Coe
hypergeometric, example . .

interpretation of the properties of normal .

Laplace and Gauss, 1800 . .
moments of . . o
multinomial

normal, Demoivre, 1700

normal, interpretation of the propertles of

of sample arithmetic means .
Poisson . . .« .« . o« 4 .. .
Poisson, arlthmetlc mean of .
Poisson, sum of the terms of
Poisson, variance of
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121
125
117
122
189

19
18
217

203
206
134

51
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116
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relative frequency .

sample .

theoretical
Distribution Theory

binomial

normal .

Poisson -

Enoscope . .
Estimating speeds and volumes
Events
per interval, Appendix Table VI .
rare, accidents at intersections
rare, accidents
universe of
Expectation
mathematical .
mathematical, of powers of a varlable
Exponential Function, Poisson

F, 5% and 19, points for distribution of, Appendix Table V
Frequency ‘

class .

cumulative

curve

distribution . .

distribution of speeds

polygon

polygon, smoothed

rectangles

relative

Gap, estimate of size required for weaving
Goodness of Fit
Chi-square test of
of the Poisson series, test of . .
a graphical method of determining .

Histogram

Intersections
accidents at .
signalized . .
signalized, calculatmg delay
traffic performance at urban street
Intervals, average length .

Page
78

. 63
62, 65

61
61
61

181

226
209
207

61

.27, 29

54

. 92, 95

222

13

19

18

12

173

17

17

15

13 64

187

104
163
178

16

209
198
203
204
194



INDEX

Kurtosis

Least Squares, prineiple of
Level of significance .
Limits, true value (confldence)

Mean
arithmetic, additive property of .
arithmetic, defined . .
arithmetic, deviation from .
arithmetie, difference between sample
arithmetic, distribution of sample
arithmetic, measure of reliability
arithmetic, properties of
arithmetic, size of sample for
average deviation
centra harmonic .
geometric .
harmonic . e e e
population, mference concerning .

Median .

Minimum spacing formula, 1nterpretat10n of
Mode .

Moments of a Dlstrlbutlon

Orthogonal Polynomials
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